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Abstract

This handout describes linear Hebbian learning and its relation to principal
components analysis �PCA�� Hebbian learning constitutes a biologically plausi�
ble form of synaptic modi�cation because it depends only upon the correlation
between pre� and post�synaptic activity� Understanding the functions that can
be performed by networks of Hebbian neurons is thus an important step in
gaining an understanding of the e�ects of activity�dependent synaptic modi��
cation in the brain� This material is also described at greater length in chapter
� of Herz	 Krogh 
 Palmer�

In the early �����s� Horace Barlow postulated his theory of redundancy reduction�
which states that a useful goal of sensory coding is to transform the input in such
manner that reduces the redundancy� due to complex statistical dependencies among
elements of the input stream� The usefulness of redundancy reduction can be under	
stood by considering the process of image formation� which occurs by light re
ecting
o� of independent entities �i�e�� objects
 in the world and being focussed onto an array
of photoreceptors in the retina� The activities of the photoreceptors themselves do
not form a particularly useful signal to the organism because the structure present in
the world is not made explicit� but rather is embedded in the form of complex sta	
tistical dependencies� or redundancies� among photoreceptor activities� A reasonable
goal of the visual system� then� is to extract these statistical dependencies so that
images may be explained in terms of a collection of independent events� Such a repre	
sentation may then recover an explicit representation of the underlying independent
entities that gave rise to the image� which would no doubt be useful to the survival
of the organism�

In recent years� a substantial body of work has shown that the response properties
of neurons at early stages of the visual system can be accounted for in terms of a
strategy for reducing the redundancy in natural images� These successes provide
encouragement that further aspects of cortical processing may be understood using

�A confusion that often arises from the term �redundancy reduction� is that it would seem to
contradict the conventional wisdom that the brain contains redundant circuitry to deal with noise
and physical damage� It is important however to distinguish between the form of redundancy that is
present within the raw input stream �which re�ects structure in the external world�� and redundancy
that is introduced by the nervous system through schemes such as population coding �e�g�� as in the
motor system�� It is the former notion of redundancy that we refer to here�
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this principle� Here� we shall consider the simplest form of redundancy that may
occur in an input stream�i�e�� linear pairwise correlations�and we shall show that
a network of linear neurons that modi�es its weights according to a Hebbian learning
rule will reduce this form of redundancy by performing principal components analysis�
or PCA�

PCA

Let us consider an input stream x that has linear pairwise correlations among its
elements� That is�

cij � hxi xji �� � � ��


The brackets h�i mean �average over many input examples�� Throughout this docu	
ment we shall assume that all variables have zero mean �hxii � �
� so cij �� � implies
that there are statistical dependencies among the inputs xi� If xi and xj were statisti	
cally independent� then cij would equal zero since in this case hxi xji � hxii hxji � ��
�Note however that the converse is note true�i�e�� cij � � does not imply that xi and
xj are statistically independent� Statistical independence is a stronger condition for
which we require P �xi� xj
 � P �xi
P �xj

�

The goal of principal components analysis is to transform the input x to a new
representation in which the variables are pairwise decorrelated� That is�

yi � ei � x ��


where hyi yji � � �i��j� Thus� the redundancy due to linear pairwise correlations
is eliminated� By de�nition� in PCA the vectors ei are orthonormal� meaning that
ei � ej � � �i��j and jeij � � �i� Also� the ei are ordered according to the variance on
the yi such that hy�

�
i � hy�

�
i � � � � � hy�ni� The process of PCA may be pictured in

geometric terms� as shown in Figure ��
PCA is a useful tool for analyzing structure in data� but it is important to realize

its limitations� One limitation of PCA is that it takes into account only �nd	order
statistics among input variables �i�e�� correlations among pairs of inputs
� In many
real	life situations� though� there will be higher	order statistical dependencies among
the variables that are also important to consider �e�g�� hxixjxki
� and PCA is blind to
these forms of structure� Another limitation of PCA is that the vectors ei are forced
to be orthogonal� and in many cases there is no a priori reason for thinking this is
appropriate� An example of an input distribution with higher	order� non	orthogonal
structure� and the way that PCA deals with this� is shown in Figure �b�

Despite the limitations of PCA� it still can be of use to us in �nding the e�ective
dimensionality of an input space �i�e�� the principal axes that account for most of the
variance
� as well as �nding independent components when the data have Gaussian
structure� It is also a useful building block for the development of more advanced
techniques� so it is a good thing to know about in general�
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Figure �� A geometric interpretation of PCA� The vectors ei constitute the �principal
axes� of the input distribution� The �rst principal component� e�� captures the
most amount of variance in the input distribution� and e� captures what is left after
subtracting out the component along e�� The distribution with respect to e� and e� is
decorrelated �because there is no diagonal structure in this new reference frame
� Note
that an underlying assumption of PCA is that the data have Gaussian structure�
i�e�� that they fall in a distribution shaped like a football� as in a� If the data are not
Gaussian distributed� as in b� then PCA is not an appropriate strategy for revealing
the structure of the input ensemble�

Linear Hebbian learning

Hebb�s rule� states that the synaptic weight between two neurons should be increased
proportional to the correlation between the pre	synaptic and post	synaptic activities�
Thus� for a linear neuron�

y �
X
i

wixi � ��


each weight wi should be increased proportional to the correlation between y and xi�
or

�wi � hy xii � ��


Now� since y depends on all the inputs� one can see intuitively from equation � that
the evolution of wi will depend on the correlation between xi and all the other inputs�
Let�s write this out explicitly� substituting the expression for y in equation � into
equation ��

�wi � h
X
j

wjxj xii

�
X
j

wjhxj xii � ��


The last step of moving wj outside of the ensemble average may be done since the wi

are changing over a much slower time	scale than the xi� In vector notion� then� we

�Named for Donald Hebb� who 	rst described the idea in his in�uential book� The Organization

of Behavior� in 
���
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have
�w � Cw ��


where C is the matrix with elements cij � hxi xji� Equation � states that the growth
of w depends solely on the input covariance matrix� C� In other words� the evolution
of w is governed by the linear pairwise statistics of the input ensemble� But how
exactly�

To get a better handle on how w evolves� let us examine a simple one	dimensional
system of the form

�w � cw � ��


This is just a linear� �rst	order di�erential equation� The solution is

w�t
 � w��
 ec t ��


where w��
 is the initial weight state at time zero� Thus� if c is positive then w will
grow exponentially� If c is negative� then w will decay exponentially� How fast w

grows or decays is set by the constant c�
Now let us examine a slightly more complex system consisting of two weights� w�

and w��

�w� � c��w� � c��w�

�w� � c��w� � c��w� � ��


This is just a two	dimensional version of equation �� written out explicitly in terms of
the vector and matrix components� It is di�cult to see a simple solution here because
the evolution of w� depends on w�� and likewise the evolution of w� depends on w��
In other words� the two variables are coupled together� If we could transform the wi

to a new coordinate system in which the variables were de	coupled� then the behavior
would be simple to analyze� as in equation �� So� let�s do that�

An aside� Eigenvectors and eigenvalues

It turns out that if C is symmetric �which it is in this case since cij � hxixji �
hxjxii � cji
� then we can re	write it in the form

C � E�ET � ���


Here� E is an orthonormal matrix with columns ei�

E �

�
��

j j j
e� e� � � � en
j j j

�
�� � ���


where ei�ei �i ��j and jeij � � �i� ET is the transpose of E� which is just E tipped on
its side ��ET 
ij � �E
ji
� and � is a diagonal matrix with non	zero terms only along
the diagonal

� �

�
�����
�� � � � � �
� �� � � � �
���

� � �
���

� � � � � �n

�
����� � ���
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In geometric terms� E is a rotation matrix� � is a scaling matrix� and ET is simply
another rotation matrix that rotates in the opposite direction of E� Thus� the act of
multiplying a point or vector by the matrix C can thus be thought of as �rst rotating
to another coordinate frame �multiplying by ET 
� then scaling each axis according to
�i within this new coordinate frame �multiplying by �
� and then rotating back to the
original coordinate frame �multiplying by E
� This process is pictured in Figure ��
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Figure �� The act of multiplying a point or vector by C may be broken into three
separate geometric operations�rotation� scaling� and counter	rotation�which is il	
lustrated here for a collection of points distributed according to a hypothetical dis	
tribution� Multiplying by ET rotates counter	clockwise in this case by about ����
Multiplying by � scales the distribution by dilating along the horizontal axis ��� � �

and contracting along the vertical axis ��� � �
� Multiplying by E simply applies the
opposite rotation of ET �

The vectors ei� which form the columns of E� are called the eigenvectors of the
matrix C� and the �i are termed the eigenvalues� The eigenvectors have the special
property that if you multiply the matrix C by an eigenvector� then you get the same
vector back but simply scaled by its eigenvalue�

Cei � �iei � ���


Thus� the term �eigen�� which in German means �self� or �characteristic�� The eigen	
vectors of C also constitute the principal components� because they will decorrelate
the input distribution �you will show this
�

Now we are in a position to understand the dynamics of our simple two	dimensional
system in equation �� Let us transform w to a new coordinate system by multiplying
by ET � That is� we shall work with a new vector�

v �

�
v�
v�

	
� ETw � ���


where v� is the projection of w along the �rst eigenvector� e�� and v� is the projec	
tion of w along the second eigenvector� e�� Thus� if we pre	multiply both sides of
equation � by ET � we get

�v � �v ���
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Now� since � is diagonal� it is easy to see how v evolves�

�v� � ��v�

�v� � ��v� � ���


Thus� we have as the solution for v� and v��

v��t
 � v���
 e��t

v��t
 � v���
 e��t � ���


Because �� and �� represent exponential growth rates� then even a slight imbalance
between the two will result in one rapidly outpacing the other� Thus� if �� � ��� then
v will grow in the direction ��� � � which in terms of our original reference frame is
just in the direction of e� �Fig� �
� Otherwise� if �� � ��� then v will grow in the
direction ��� � � which in terms of our original reference frame is in the direction of e��

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

W1’

W
2’

Figure �� The evolution of v� In this case� �� � � and �� � �� so the growth of
v� rapidly outpaces v�� Since the v� axis is simply the same as the vector e� in the
original coordinate system� then w will grow in the direction of e�� The dotted line
shows the expected evolution of v if v� and v� were to grow at equal rates�

Constraining the growth of w� Oja�s rule
So far we have shown that a linear neuron that updates its weights according to

a simple Hebbian rule� �wi � hy xii� will grow its weight vector along the direction of
the eigenvector of the input covariance matrix� C� with maximum eigenvalue �or the
�rst principal component
� As it stands� though� w will grow without bound �i�e��
jwj � �
� which is not feasible for a physically realizable system� We can constrain
the growth of w using a modi�ed form of Hebb�s rule� termed Oja�s rule��

�w � hy �x	 yw
i � ���


Let�s get a better feel for what this rule does by re	writing it in two terms�

�w � hy xi 	 hy�iw � ���


�Named for Erkki Oja �of the Helsinki University of Technology in Espoo� Finland�� who invented
the rule�
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The �rst term on the right side is just the same as Hebb�s rule�each wi increases
proportional to the correlation between y and xi� The second term may be interpreted
essentially as providing a subtractive weight decay to prevent w from growing without
bound� The equilibrium solution for w is reached when �w � �� or when the �rst term
equals the second� Since the �rst term hy xi is just equal to Cw �as we showed in the
beginning� in eq� �
� then at equilibrium we have

Cw � hy�iw � ���


Thus� by de�nition �eq� ��
� w will be an eigenvector of C at equilibrium� Further	
more� we can show that jwj � �� since

hy�i � wTCw

� wT hy�iw

� hy�ijwj�� ���


Showing that w is the eigenvector with maximum eigenvalue is a little more involved
�see Hertz� Krogh� ! Palmer
� but can be seen intuitively from equation ��� since �w
is just the negative of the gradient of hjx	 ywj�i with respect to w� In other words�
w is attempting to move in a direction that captures the most amount of variance in
the input distribution� which is the property of the �rst principal component�

The network implementation of Oja�s rule takes the output� y� and sends it back
through the weights w to form a prediction of the input state "x� The prediction "x is
subtracted from the input x� and then w is updated according to a Hebb rule between
y and the residual input signal� x	 "x�

Learning multiple eigenvectors� Sanger�s rule
It would be nice to be able to learn more than just the �rst principal component�

If we had a system of m neurons� we would like to properly coordinate them so as to
learn the �rst m principal components� For this� we can use Sanger�s rule��

�wi � hyi �x	
X
j�i

yjwj
i � ���


Sanger�s rule may be seen as an extension of Oja�s rule� First of all� we can see
that for i � �� Sanger�s rule is precisely equivalent to Oja�s one	unit rule� since the
summation in equation �� is over j 
 �� Thus� w� will converge to the �rst principal
component as before� and its evolution will not be a�ected by the evolution of w�

through wm� Now for w�� let�s pretend that w� has already converged to the �rst
eigenvector e�� So the learning rule for w� is

�w� � hy� �x� 	 y�w�
i � ���


where x� is what remains of x after subtracting out its component along the direction
of e��i�e�� x� � x	 y�e�� Thus� the learning rule for w� is simply Oja�s rule applied

�Named for Terry Sanger� who invented it while as an E�E� Master
s student at MIT�
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to a sub	space that is orthogonal to e�� w� will therefore converge to the eigenvector
of this subspace with maximum eigenvalue� which is e� within the original space�
This procedure is repeated then for w� �subtracting out the component along e� and
e�
� and so on until m components are learned� A full	
edged� formal proof of the
convergence of Sanger�s rule may be found in Hertz� Krogh� ! Palmer�

The network implementation of Sanger�s rule is not unlike the network implemen	
tation of Oja�s rule� except now care must be taken to subtract out the predicted
input for each yi in a progressive manner� The output of each neuron� yi� is fed back
through its weight vector� wi� and progressively accumulated to form a prediction
"xi �

P
j�i ywi� This is subtracted from the input� x� and then wi is updated ac	

cording to a Hebb rule between yi and the residual� x 	 "xi� Thus� each wi learns
from a di�erent input ensemble� with progressively more structure subtracted out as
i increases� This ordered progression is a bit cumbersome in neurobiological terms�
However� it turns out that there is an extension of Oja�s one	unit rule to multiple
units that does not require this strict ordering� Sanger�s rule is just a bit simpler to
understand in terms of why and how it works�

Non�linear Hebbian learning

We were able to make headway in analyzing Hebbian learning with a linear neuron
because we could perform the manipulation in equation � and thus derive a closed
form solution for w� If the neuron has an output non	linearity� though� this won�t
be so easy� Let us say that the output y is an arbitrary non	linear function of the
weighted inputs�

y � f�
X
i

wixi
 � ���


Performing Hebbian learning with such a neuron then gives us

�wi � hyxii

� hf�
X
j

wjxj
xii � ���


Now� it is not so easy to pull the wj outside of the summation and analyze the
evolution of w� We could� however� perform a Taylor expansion on f � in which case we
would see that the evolution of w now depends on many higher	order statistics of the
input ensemble� Which statistics are learned from� however� depends on the precise
form of f � This then begs the question� what form of non	linearity is appropriate
for learning the structure of a given input ensemble� This question is addressed
by networks that perform competitive learning �or clustering
� sparse coding� and
independent components analysis �ICA
� which we turn to next�
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