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CSE/NEUBEH 528

Lecture 9: Computation by Networks
(Chapter 7)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 

Lecture figures are from Dayan & Abbott’s book
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Course Summary (thus far)

F Neural Encoding

What makes a neuron fire? (STA, covariance analysis)

Poisson model of spiking

F Neural Decoding

Spike-train based decoding of stimulus

Stimulus Discrimination based on firing rate

Population decoding (Bayesian estimation)

F Single Neuron Models

RC circuit model of membrane

Integrate-and-fire model

Conductance-based Models
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Today’s Agenda

F Computation in Networks of Neurons

From spiking to firing-rate based networks

Feedforward Networks

Linear Recurrent Networks
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Modeling Networks of Neurons

F Option 1: Use spiking neurons 
Advantages: Model computation and learning based on:

Spike Timing

Spike Correlations/Synchrony between neurons

Disadvantages: Computationally expensive

F Option 2: Use neurons with firing-rate outputs (real 

valued outputs)
Advantages: Greater efficiency, scales well to large networks

Disadvantages: Ignores spike timing issues

F Question: How are these two approaches related?
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Basic Synapse Model

F Assume Prel = 1

F Model the effect of a single spike input on Ps

F Kinetic Model: 
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Synaptic Filter and Postsynaptic Data

Exponential function K(t) gives reasonable fit to biological data

(other options: difference of exponentials, “alpha” function)
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Modeling a Synaptic Input to a Neuron
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From Spiking to Firing Rate Models
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Synaptic Current Dynamics

F If synaptic kernel K is exponential:

Differentiating
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Output Firing-Rate Dynamics

F How is the output firing rate v related to synaptic inputs?

F Looks very much like membrane dynamics equation:

F On-board derivations of special cases obtained from 

comparing r and s …

(see also pages 234-236 in the text)
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How good are the Firing Rate Models?

Firing rate model v(t) = F(I(t)) describes this well but not this case

Input I(t) = I0 + I1cos(t)
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Feedforward versus Recurrent Networks
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For feedforward networks, matrix M = 0
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Example: Linear Feedforward Network
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Linear Feedforward Network
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Linear Filtering for Edge Detection
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Example of Edge Detection in a 2D Image

http://www.alexandria.nu/ai/blog/entry.asp?E=51
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Edge detectors in the visual system

Examples of 

receptive 

fields in 

primary 

visual cortex

(V1)

V1

(From Nicholls et al., 1992)
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Filtering network is computing derivatives!
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Feedforward Networks: Example 2

Input: Area 7a Neurons with Gaze-Dependent Tuning Curves

Output: Premotor Cortex Neuron with Body-Based Tuning Curves

Coordinate Transformation

(From Section 7.3 in Dayan & Abbott)
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Output of Coordinate Transformation Network

Same tuning curve 

regardless of gaze angle

Premotor cortex neuron responds 

to stimulus location relative to 

body, not retinal image location

Head fixed;

gaze shifted to g1   g2   g3

(See section 7.3 in Dayan & Abbott for details)



23R. Rao, CSE528: Lecture 9

Linear Recurrent Networks
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Next Class: Recurrent Networks

F To Do:

Homework 2

Choose final project topic and partner(s)


