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CSE/NB 528

Lecture 12: Unsupervised Learning and 

Probability Density Estimation
(Chapters 8 & 10)
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Today’s Agenda: Learning about Learning

 Hebbian learning and its variants (Covariance, Oja rule)
 Relation to Principal Component Analysis (PCA)

 Unsupervised Learning and Density Estimation
 K-means Clustering and Mixture of Gaussians

 EM algorithm

(Copyright, Warner Brothers)
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Flashback: Hebbian Learning 

 Linear neuron:

 Basic Hebb Rule: 

 What is the average effect of this rule?

 Q is the input correlation matrix:
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Variants of Hebb’s Rule

 Hebb:

 Covariance rule:

 Oja’s rule:
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What does the Hebb rule do anyway?

Eigenvector analysis of Hebb rule…
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Hebb Rule implements Principal Component 

Analysis (PCA)!

Pure Hebb Pure Hebb Covariance Rule
Input mean = (0,0) Input mean = (2,2)        Input mean = (2,2)

Hebb rule rotates weight vector to align with principal 

eigenvector of input correlation/covariance matrix (i.e. 

direction of maximum variance)

Initial w

Final w
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What about this data?

?

What does the 

covariance rule learn?

Initial w
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PCA does not correctly describe the data

BUT…Input data is made up of two clusters (Gaussians) 

 two “causes”
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Causal Models

 Main goal of unsupervised 

learning: Learn the “Causes”

underlying the input data

 Example: Learn the means and 

variances of the two Gaussians A 

and B that generated this data

 Want: Two neurons A and B that 

learn the means and variances 

based solely on input data (which 

are samples from the distribution)

meanA
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Generative versus Recognition Models
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(similar to 

decoding vs. 

encoding)



11R. Rao, 528: Lecture 12

How do we learn the parameters (e.g., mean)?

Idea: Use one neuron to represent one cluster

Find cluster center (mean) by averaging all points in neuron’s cluster

How do you find which point belongs to which cluster?
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Break it down into 2 subproblems

Suppose you are given the cluster 

centers ci

Q:  how do you assign points to 

a cluster?

A:   for each point p, choose 

closest ci

Suppose you are given the points in 

each cluster

Q:  how to re-compute each 

cluster’s center?

A:  choose ci to be the mean of 

all the points in that cluster



13R. Rao, 528: Lecture 12

0

1

2

3

4

5

0 1 2 3 4 5

c1

c2

c3

“K-means” clustering: Example

Randomly initialize the cluster centers (synaptic weights)
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Determine cluster membership for each input 

(“winner-takes-all” inhibitory circuit)

“K-means” clustering: Example
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Re-estimate cluster centers (adapt synaptic weights)

“K-means” clustering: Example



16R. Rao, 528: Lecture 12

0

1

2

3

4

5

0 1 2 3 4 5

Result of first iteration

c1

c2
c3

“K-means” clustering: Example
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Result of second iteration

“K-means” clustering: Example
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K-means clustering

 Properties

 Will always converge to some solution

 Can be a “local minimum”

• does not always find the global minimum of the 

overall objective function:
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K-means and probability density estimation

 Can formalize K-means as probability density estimation

 Model data as a mixture of K Gaussians:

 Estimate not only means but also covariances
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K-means and the EM algorithm

Expectation Maximization (EM) Algorithm overview:

 Initialize K clusters: C1, …, CK 

(j, j) and P(Cj) for each cluster j

1. Estimate which cluster each data point belongs to

2. Re-estimate cluster parameters

3. Repeat 1 and 2 until convergence
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EM algorithm for Mixture of Gaussians

 E step: Compute probability of membership in cluster based 

on output of previous M step (p(xi|Cj) = Gaussian(j, j))

 M step: Re-estimate parameters based on output of E step
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Results from the EM algorithm

Input data:

(j, j)
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Recall: Generative Models
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Instead of clusters, 

what if data was 

generated by linear 

superposition of 

causes?

(e.g., an image 

composed of several 

features, or audio 

containing several 

voices)



25R. Rao, 528: Lecture 12

Linear Generative Model

 Suppose input u is represented by linear superposition of 

causes v1, v2, …, vk and basis vectors (or “features”) gi:
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Example: “Eigenfaces”

 Suppose your basis vectors or “features” gi  are the 

eigenvectors  of input covariance matrix of face images

u
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Linear combination of eigenfaces
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Linear Generative Model

 Suppose input u is represented by linear superposition of 

causes v1, v2, …, vk and basis vectors or “features” gi:

 Problem: For a set of inputs u, estimate causes vi for each u

and learn feature vectors gi

 Suppose number of causes is much lesser than size of input

 Idea: Find v and G that minimize reconstruction errors:
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Probabilistic Interpretation

 E is the same as the negative log likelihood of data:

Likelihood = Gaussian with mean vector Gv and covariance 

matrix I  (identity matrix)
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 Unsupervised learning with linear models: Sparse 

coding, Predictive coding

 Supervised Learning

 Things to do:
 Finish reading Chapters 8 and 10 

 Finish Homework #3 (due next Friday)

Work on mini-project

Next Class: More on Learning

Have a great 

weekend!


