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Correlation ρ ≠ 0 
ubiquitous in vivo:

•Retina: Mastronade 1983.

•LGN: Alonso et al 1996

•V1: Kohn and Smith 2005

see also Ecker et al 2010

•IT: Gawne & Richmond 1993

•PF: Constanidis & Goldman-Rakic 
2002.

•Motor cortex: Vaadia et al 1995

•Parietal Cortex: Lee et al 1998

•Somatosensory thal.: Bruno & 
Sakmann 2006

•A1: deCharms & Merzenich 1996

•SI: Romo et al 2003. …



p(n1, n2|s(t)) �= p(n1|s(t))p(n2|s(t))

Why the correlations?

Common signal input→Common spike response 
→ SIGNAL CORRELATIONS

s(t)

ADDITIONAL “NETWORK-DRIVEN” CORRELATIONS 
ARE ... 

NOISE CORRELATIONS

p(n1, n2) �= p(n1)p(n2)

We’ll  focus on noise correlations.

OUTLINE

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding 
 (a) Homogeneous populations

...

Impact on signal propagation

BASIC MECHANISMS FOR CORRELATED SPIKING
...

BEYOND CELL-PAIRS:  HIGHER-ORDER CORRELATIONS

...
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Rate coding

ν

Reddy, Kreiman, Koch, and Fried (2005)
Hubel and Weisel. J. Physiol.,1962

Response Variability
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Variable spike 
count introduces 
ambiguity. 

(Poisson process)
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Population codes – average over M correlated cells

Zohary, Shadlen and Newsome (1994)

SNR
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= SNR(ν) ∼ 1
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OUTLINE

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding 
(a) Homogeneous populations:  limits population averaging / 
degrades info
(b) Heterogeneous cell pairs ... 
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ν

Sompolinsky et al., Phys Rev. E., 2001 
Averbeck et al., Nat Rev Nsci 2006 
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ν

Abbott+Dayan, N. Comp. 99; Sompolinsky et 
al., PRE 01; Averbeck et al., Nat Rev Nsci 06 
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What are effects of 
correlations on information 

content in cell pair?
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Decode … via (optimal) maximum likelihood discrimination

p1(n) p2(n)
Choose stim_2Choose stim_1

n

For one neuron:

Consider discriminating two nearby stimuli

p1(n):  response n under stimulus 1
p2(n):  response n under stimulus 2

24
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Abbott+Dayan, N. Comp. 99, Sompolinsky et 
al., PRE 01, Averbeck et al., Nat Rev Nsci 06 
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Positive noise correlation 
degrades signal encoding.

...

when also have positive 
signal correlation.

Abbott+Dayan, N. Comp. 99, Sompolinsky et 
al., PRE 01, Averbeck et al., Nat Rev Nsci 06 
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...

when also have negative 
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Abbott+Dayan, N. Comp. 99, Sompolinsky et 
al., PRE 01, Averbeck et al., Nat Rev Nsci 06 



27

ν

neuron 1 response

ne
ur

on
 2

 re
sp

on
se

uncorrelated

Positive noise correlation 
ENHANCES signal encoding.

...

when also have negative 
signal correlation.
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Abbott+Dayan, N. Comp. 99, Sompolinsky et 
al., PRE 01, Averbeck et al., Nat Rev Nsci 06 
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CONSEQUENCES OF CORRELATED SPIKING

Impact on coding 
(a) Homogeneous populations:  limits population averaging / 
degrades info
(b) Heterogeneous cell pairs ...

similar stimulus tuning:     DEGRADE CODING 
different stimulus tuning:  ENHANCE CODING 
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ν

θ

• Now, generalize to populations of more than two cells …



Tuning curves  [e.g Hubel+Wiesel, '60s]

n1

n2

n3

n4

Cramér-Rao Bound:

θ ∼ x

Usually, but 
not always
saturated!
(Berens et al
COSYNE ’11)

Implications:  Tuning curves  [e.g Hubel+Wiesel, '60s]

n1

n2

n3

n4

Cramér-Rao Bound:

Interpret:  positive correlations for “nearby” cells

IF =

��
d

dx
log P (n|x)

�2
�



… and nearby cells have positive signal correlations

… so, expect presence of correlations to DECREASE information

Averbeck et al 2006:

INCREASE 
CORRELATION

CONCLUDE:  Here, correlations degrade coding.  

In general, degrade OR enhance effect could dominate -- must examine case 
by case.



OUTLINE

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding 
(a) Homogeneous populations:  limits population averaging / 
degrades info
(b) Heterogeneous cell pairs ...

similar stimulus tuning:     DEGRADE CODING 
different stimulus tuning:  ENHANCE CODING 

(c) Heterogeneous population ... mixed effects 

Impact on signal propagation 
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Salinas and Sejnowski, 2000

Correlated variability modulates downstream rates 



Correlated variability modulates downstream rates 

37

Salinas and Sejnowski, 2000

Downstream cell;
fluctuation-driven

rate = f (std dev)

sout(t)

sout(t)

What if correlations are stimulus-dependent?

rate ν

φ π

correlation ρ

φ0 π

Here, co-tuning of correlations 
typically INCREASES information

for SUMMED outputs!



Stimulus-dependent correlations - an example

Chen et al., J Phys, 2009

Cafaro and Rieke, Nature, 2010
Stimulus-dependent correlations - an example

POSITIVE correlations b/w incoming conductances

→ NEGATIVE correlations
 b/w incoming currents.

Fluctuations cancel.



Correlated 

Stimulus Response CEI(t)
(cross-correlation 

between Gexc and Ginh)

adapted from
Cafaro and Rieke, Nature, 2010

Stimulus-dependent correlations - an example

low corr high corr

low corr

high 
corr

Correlated 

Uncorrelated (trial 
shuffled)

Stimulus Response CEI(t)
(cross-correlation 

between Gexc and Ginh)

adapted from
Cafaro and Rieke, Nature, 2010

Stimulus-dependent correlations - an example

low corr high corr

More neg. corr
→ lower rates / variance
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CONSEQUENCES OF CORRELATED SPIKING

Impact on coding 
 
Impact on signal propagation
Positive correlation sets gain:  

Downstream rate ~ upstream rate X upstream correlation 

BASIC MECHANISMS FOR CORRELATED SPIKING

Correlations from common input



Correlations from common input

As in:  
Shadlen and Newsome, J. Nsci. '98
Binder and Powers, J. Neurophys. '01
Tetzlaff, Geisel, and Diesmann, Neurocomp. '02
Moreno-Bote et al, Phys. Rev. Lett. '06
Galan et al, J. Nsci. '06
            … and others

Correlations from common input

As in:  
Shadlen and Newsome, J. Nsci. '98
Binder and Powers, J. Neurophys. '01
Tetzlaff, Geisel, and Diesmann, Neurocomp. '02
Moreno-Bote et al, Phys. Rev. Lett. '06
Galan et al, J. Nsci. '06
            … and others
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Correlations increase with rate
[de la Rocha, Doiron et al ’07; Shea-Brown et al ’08; Rosenbaum+Josic, 
’10]
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Spike generation and myriad other nonlinearities shape 
correlated spiking ...

... and can introduce stimulus-dependent correlations.

de la Rocha, Doiron et al, Nature ’07
Shea-Brown et al, PRL ’08



Simplest model Integrate-and-fire model

� 

S = ρ
c

Rate

1

0

1

Spike generation and myriad other nonlinearities shape 
correlated spiking ...

... and can introduce stimulus-dependent correlations.

rate ν

φ π

correlation ρ

φ0 π

de la Rocha, Doiron et al, Nature ’07
Shea-Brown et al, PRL ’08
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Another simple (nonlinear) mechanism 



Saturation!

R(I)

I I

S

Another simple (nonlinear) mechanism 

rate ν

φ π

correlation ρ

φ0 π

c =
cov(Σ)
var(Σ)

c � rinN(N − 1)
N + rinN(N − 1)

→ 1

Fraction p of
EPSPs is
common,
+ correlated w/
rin

Input
Currents, 
correlation 
c

SPIKES, 
correlation 

prin

Pooling amplifies input correlations! Renart, de la Rocha, Science ’10;    
Rosenbaum et al, Frontiers ’10

ρ

Denom in formula comes from 
# of correlated pairs ... 
UNDEREST correlation if 
ignore p

Numer is variance: variances 
sum plus cross terms, p 
makes not diff here ... 



rin

Renart, de la Rocha, Science ’10;    
Rosenbaum et al, Frontiers ’10

Recurrent connections:  story gets surprising fast ...

e.g. 

Suggests big network  big correlations?

p

Renart, de la Rocha, 
Science ’10



Main result: no.
Big network  small correlations

SETUP:
N cells / pop.
Connection proba p=0.2: 
 DENSE
Connection strength ~1/sqrt(N): 
 STRONG

Mechanism:  cancellation

Suggests big network  big correlations?
Renart, de la Rocha, 

Science ’10

Main result: no.
Big network  small correlations

SETUP:
N cells / pop.
Connection proba p=0.2: 
 DENSE
Connection strength ~1/sqrt(N): 
 STRONG

Mechanism:  cancellation

Suggests big network  big correlations?
Renart, de la Rocha, 

Science ’10



Mechanism:  cancellation

Pooling:

Cancellation:

Time-integration:

Suggests big network  big correlations?
Renart, de la Rocha, 

Science ’10

OUTLINE

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding 
 

Impact on signal propagation

BASIC MECHANISMS FOR CORRELATED SPIKING
Common input → rate-dependent correlations
Pooling over correlated population → amplification of correlations
Recurrent balanced networks → cancellation of correlations

BEYOND CELL-PAIRS:  HIGHER-ORDER CORRELATIONS

64



Population-wide 
spiking dynamics

65
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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.
We conclude that weak correlations among pairs of neurons

coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.
We recall that maximum entropy models have a close connection

to statistical mechanics: physical systems in thermal equilibrium are
described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).

Figure 2 | A maximum entropy model including all pairwise interactions
gives an excellent approximation of the full network correlation
structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
cultured cortical networks; error bars show standard errors of the mean.
Similar results are obtained on changing N and Dt; see Supplementary
Information.
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complex patterns of activity in the population [38,23].
However, recent work has shown that synchronized firing
in larger groups is largely accounted for by pairwise
interactions between adjacent cells, and thus does not
imply complex or long-range interactions.

To illustrate the approach, consider three cells (A, B, and
C), each of which fires a spike (e.g. A = 1) or does not (e.g.
A = 0). Suppose that P(A,B, C) represents the frequency of
all eight possible patterns of firing in these three cells. The
simplest model is that any given pattern of firing, for
example all three cells firing simultaneously, occurs with

a frequency predicted from statistical independence, for
example P(A = 1,B = 1, C = 1) = P(A = 1)P(B = 1)P(C = 1).
This model fails. This is not surprising because it fails to
describe activity in just two cells, for example P(A = 1,
B = 1) 6¼ P(A = 1)P(B = 1) (see Figure 1).

Given that the independent model fails, the next sim-
plest model is a pairwise model, in which firing patterns
in all pairs of cells, that is P(A, B), P(A, C), and P(B, C),
are sufficient to predict the full pattern of activity in all
three cells, P(A, B, C). However, as stated, the pairwise
model is mathematically underconstrained, because

398 Sensory systems

Figure 2

Multi-neuron firing patterns in primate retinal ganglion cells [25"]. (a) and (c) The frequency of all simultaneous firing patterns was measured in the
presence of steady, spatially uniform illumination (10 ms time bins). In a group of 7 cells, there are 27 = 128 possible firing patterns, ranging from no
cells firing (0000000) to all cells firing (1111111). The observed frequency of each firing pattern was compared to predictions from statistical
independence (black points). Firing patterns with multiple synchronized spikes occurred far more often than expected by chance (below dashed line of
equality) indicating significant multi-neuron synchronized firing. A statistical model that accounts for synchrony between pairs of adjacent neurons
successfully predicted all multi-neuron firing patterns (red points). (b) and (d) A visualization of synchronized firing at select moments in time (cells firing
represented as black). These plots indicate that synchronized firing can encompass well over seven cells in contiguous regions. It is unknown whether
synchrony between adjacent neurons can account for these large patterns of activity.

Current Opinion in Neurobiology 2008, 18:396–402 www.sciencedirect.com

Graphic:
Schneidman et al. 2006
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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.
We conclude that weak correlations among pairs of neurons

coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.
We recall that maximum entropy models have a close connection

to statistical mechanics: physical systems in thermal equilibrium are
described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).

Figure 2 | A maximum entropy model including all pairwise interactions
gives an excellent approximation of the full network correlation
structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
cultured cortical networks; error bars show standard errors of the mean.
Similar results are obtained on changing N and Dt; see Supplementary
Information.
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complex patterns of activity in the population [38,23].
However, recent work has shown that synchronized firing
in larger groups is largely accounted for by pairwise
interactions between adjacent cells, and thus does not
imply complex or long-range interactions.

To illustrate the approach, consider three cells (A, B, and
C), each of which fires a spike (e.g. A = 1) or does not (e.g.
A = 0). Suppose that P(A,B, C) represents the frequency of
all eight possible patterns of firing in these three cells. The
simplest model is that any given pattern of firing, for
example all three cells firing simultaneously, occurs with

a frequency predicted from statistical independence, for
example P(A = 1,B = 1, C = 1) = P(A = 1)P(B = 1)P(C = 1).
This model fails. This is not surprising because it fails to
describe activity in just two cells, for example P(A = 1,
B = 1) 6¼ P(A = 1)P(B = 1) (see Figure 1).

Given that the independent model fails, the next sim-
plest model is a pairwise model, in which firing patterns
in all pairs of cells, that is P(A, B), P(A, C), and P(B, C),
are sufficient to predict the full pattern of activity in all
three cells, P(A, B, C). However, as stated, the pairwise
model is mathematically underconstrained, because

398 Sensory systems

Figure 2

Multi-neuron firing patterns in primate retinal ganglion cells [25"]. (a) and (c) The frequency of all simultaneous firing patterns was measured in the
presence of steady, spatially uniform illumination (10 ms time bins). In a group of 7 cells, there are 27 = 128 possible firing patterns, ranging from no
cells firing (0000000) to all cells firing (1111111). The observed frequency of each firing pattern was compared to predictions from statistical
independence (black points). Firing patterns with multiple synchronized spikes occurred far more often than expected by chance (below dashed line of
equality) indicating significant multi-neuron synchronized firing. A statistical model that accounts for synchrony between pairs of adjacent neurons
successfully predicted all multi-neuron firing patterns (red points). (b) and (d) A visualization of synchronized firing at select moments in time (cells firing
represented as black). These plots indicate that synchronized firing can encompass well over seven cells in contiguous regions. It is unknown whether
synchrony between adjacent neurons can account for these large patterns of activity.
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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.
We conclude that weak correlations among pairs of neurons

coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.
We recall that maximum entropy models have a close connection

to statistical mechanics: physical systems in thermal equilibrium are
described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).

Figure 2 | A maximum entropy model including all pairwise interactions
gives an excellent approximation of the full network correlation
structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
cultured cortical networks; error bars show standard errors of the mean.
Similar results are obtained on changing N and Dt; see Supplementary
Information.
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complex patterns of activity in the population [38,23].
However, recent work has shown that synchronized firing
in larger groups is largely accounted for by pairwise
interactions between adjacent cells, and thus does not
imply complex or long-range interactions.

To illustrate the approach, consider three cells (A, B, and
C), each of which fires a spike (e.g. A = 1) or does not (e.g.
A = 0). Suppose that P(A,B, C) represents the frequency of
all eight possible patterns of firing in these three cells. The
simplest model is that any given pattern of firing, for
example all three cells firing simultaneously, occurs with

a frequency predicted from statistical independence, for
example P(A = 1,B = 1, C = 1) = P(A = 1)P(B = 1)P(C = 1).
This model fails. This is not surprising because it fails to
describe activity in just two cells, for example P(A = 1,
B = 1) 6¼ P(A = 1)P(B = 1) (see Figure 1).

Given that the independent model fails, the next sim-
plest model is a pairwise model, in which firing patterns
in all pairs of cells, that is P(A, B), P(A, C), and P(B, C),
are sufficient to predict the full pattern of activity in all
three cells, P(A, B, C). However, as stated, the pairwise
model is mathematically underconstrained, because
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Figure 2

Multi-neuron firing patterns in primate retinal ganglion cells [25"]. (a) and (c) The frequency of all simultaneous firing patterns was measured in the
presence of steady, spatially uniform illumination (10 ms time bins). In a group of 7 cells, there are 27 = 128 possible firing patterns, ranging from no
cells firing (0000000) to all cells firing (1111111). The observed frequency of each firing pattern was compared to predictions from statistical
independence (black points). Firing patterns with multiple synchronized spikes occurred far more often than expected by chance (below dashed line of
equality) indicating significant multi-neuron synchronized firing. A statistical model that accounts for synchrony between pairs of adjacent neurons
successfully predicted all multi-neuron firing patterns (red points). (b) and (d) A visualization of synchronized firing at select moments in time (cells firing
represented as black). These plots indicate that synchronized firing can encompass well over seven cells in contiguous regions. It is unknown whether
synchrony between adjacent neurons can account for these large patterns of activity.
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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.
We conclude that weak correlations among pairs of neurons

coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.
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described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).
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structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
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However, recent work has shown that synchronized firing
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a frequency predicted from statistical independence, for
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describe activity in just two cells, for example P(A = 1,
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plest model is a pairwise model, in which firing patterns
in all pairs of cells, that is P(A, B), P(A, C), and P(B, C),
are sufficient to predict the full pattern of activity in all
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Multi-neuron firing patterns in primate retinal ganglion cells [25"]. (a) and (c) The frequency of all simultaneous firing patterns was measured in the
presence of steady, spatially uniform illumination (10 ms time bins). In a group of 7 cells, there are 27 = 128 possible firing patterns, ranging from no
cells firing (0000000) to all cells firing (1111111). The observed frequency of each firing pattern was compared to predictions from statistical
independence (black points). Firing patterns with multiple synchronized spikes occurred far more often than expected by chance (below dashed line of
equality) indicating significant multi-neuron synchronized firing. A statistical model that accounts for synchrony between pairs of adjacent neurons
successfully predicted all multi-neuron firing patterns (red points). (b) and (d) A visualization of synchronized firing at select moments in time (cells firing
represented as black). These plots indicate that synchronized firing can encompass well over seven cells in contiguous regions. It is unknown whether
synchrony between adjacent neurons can account for these large patterns of activity.
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SUMMARY
CONSEQUENCES OF CORRELATED SPIKING

Impact on coding 
(a) Homogeneous populations:  limits population averaging / degrades info
(b) Heterogeneous cell pairs ...

similar stimulus tuning:     DEGRADE CODING 
different stimulus tuning:  ENHANCE CODING 

(c) Heterogeneous populations:  competing effects

Impact on signal propagation
Correlation sets gain:  Downstream rate ~ upstream rate X upstream correlation 

BASIC MECHANISMS FOR CORRELATED SPIKING
Common input → rate-dependent correlations
Pooling over correlated population → amplification of correlations
Recurrent balanced networks → cancellation of correlations

BEYOND CELL-PAIRS:  HIGHER-ORDER CORRELATIONS
Maximum-entropy methods measure via log-linear model
Mixed results for presence and impact on coding
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