

SUMMARY

- 1) Synchrony allows information to propagate through "layers" of neurons
 - Synchronized activity can be necessary to trigger "downstream" cells
- 2) Coupling and rhythms yield new computational strategies
 - Diverse neurons give diverse results
 - frequency-doubling and antiphase states
 - significance for computation and beautiful mathematics (N. Kopell)
 - Speech recognition (Hopfield and Brody) and may other applications!

SUMMARY -- synchrony

- Can arise in several ways:
 - Recurrent coupling
 - Feedforward coupling
 - Coordinated inputs
- Uses:
 - Synchronized activity can be necessary to trigger "downstream" cells
 - Coupling and rhythms yield new computational strategies
 - See paper "We've got rhythm" by Nancy Kopell
 - Frequency-doubling and antiphase states (Rinzel, Golomb, Kopell)
 - Speech recognition (Hopfield and Brody) and may other applications!

5	7	
э	1	

• extras	
	58

A key question...

• ONCE a synchronized "burst" of activity has been generated, can it be stably propagated through *layers* of cortical tissue? Or will it "dissipate"?

OK ... let's take the simplest imaginable case for z -- IF PRC $\begin{bmatrix} 10 & \int_{5}^{10} & \frac{d\theta_{1}}{dt} = \omega + z(\theta_{1})\delta(t - t_{2}^{j}) \\ & \frac{d\theta_{2}}{dt} = \omega + z(\theta_{2})\delta(t - t_{1}^{j}) \end{bmatrix}$ Moral: coupling two neurons together does **nothing** if this coupling is not voltage (phase) dependent Note that, if we introduced reversal potentials $I_{syn} = \delta (t-t^{j}) (V_{syn}-V)$ into the above, would recover voltage dependence and hence coupling would have some synchronizing effect ₆₀

Goal: simple phase description

natural frequency $\frac{d\theta}{dt} = \omega$ • Let $\mathbf{x} = \begin{pmatrix} V \\ q \end{pmatrix}$. Then we have defined coordinate change so that: $\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}) \rightarrow \frac{d\theta}{dt} = \omega$ where $\mathbf{F}(\mathbf{x})$ is 'original' neural vectorfield giving oscillations at freq. ω .

61

62

Goal: simple phase description

$$\frac{d\theta}{dt} = \underbrace{\omega}_{q} + \cdots$$
• Let $\mathbf{x} = \begin{pmatrix} V \\ q \end{pmatrix}$. Then we have defined coordinate change so that:

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}) \rightarrow \frac{d\theta}{dt} = \omega$$
where $\mathbf{F}(\mathbf{x})$ is 'original' neural vectorfield giving oscillations at freq. ω .
• We're actually interested in effects of additional currents: $J(\mathbf{x},t)$ "perturbation"

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}) + \begin{pmatrix} J(\mathbf{x},t) \\ 0 \end{pmatrix} \rightarrow \frac{d\theta}{dt} = \frac{\partial\theta}{\partial \mathbf{x}} \cdot \left[\mathbf{F}(\mathbf{x}) + \begin{pmatrix} J(\mathbf{x},t) \\ 0 \end{pmatrix}\right]$$

$$\frac{d\theta}{dt} = \omega + \frac{\partial\theta}{\partial V} J(\mathbf{x},t)$$
63