
How well can we learn what the stimulus is by looking

at the neural responses?

Two approaches:

• devise explicit algorithms for extracting 

a stimulus estimate

• directly quantify the relationship between 

stimulus and response using information theory  

Decoding



Yang Dan, UC Berkeley

Reading minds: the LGN



Britten et al. „92: behavioral monkey data + neural responses

Two-alternative tasks



Behavioral performance



Discriminability:    d‟ = ( <r>+ - <r>- )/ sr

Predictable from neural activity?



p(r|+)p(r|-)

<r>+<r>-

z

Decoding corresponds to comparing test, r, to threshold.

a(z) = P[ r ≥ z|-] false alarm rate, “size”

b(z) = P[ r ≥ z|+] hit rate, “power”

Find z by maximizing P[correct] = p(+) b(z) + p(-)(1 – a(z))

Signal detection theory



summarize performance of test for different thresholds z

Want b  1, a  0.

ROC curves



The area under the ROC curve corresponds to P[correct]

for a two-alternative forced choice task

ROC curves



If p[r|+] and p[r|-] are both Gaussian, 

P[correct] = ½ erfc(-d‟/2).

To interpret results as two-alternative 

forced choice, need simultaneous responses 

from + neuron and from – neuron. 

Get “- neuron” responses from same neuron 

in response to – stimulus.

Ideal observer: performs as area under ROC 

curve.

Emergence of the logistic function



Close correspondence between neural and behaviour..

Why so many neurons?  Correlations limit performance.



The optimal test function is the likelihood ratio,

l(r) = p[r|+] / p[r|-].

(Neyman-Pearson lemma)

Note that

l(z) = (db/dz)  / (da/dz)  =  db/da

i.e. slope of ROC curve

Is there a better test to use than r?



Penalty for incorrect answer: L+, L-

Observe r;

Expected loss Loss+ = L+P[-|r]

Loss- = L-P[+|r]

Cut your losses: answer + when Loss+ < Loss-

i.e. L+P[-|r] > L-P[+|r].

Using Bayes‟, P[+|r] = p[r|+]P[+]/p(r);

P[-|r] = p[r|-]P[-]/p(r);

 l(r) = p[r|+]/p[r|-] >  L+P[-] / L-P[+] .

Likelihood as loss minimization



Again, if p[r|-] and p[r|+] are Gaussian,

and P[+] and P[-] are equal,

P[+|r] = 1/ [1 + exp(-d‟ (r - <r>)/ s)].

 d‟ is the slope of the sigmoidal fitted to P[+|r]

+

The role of d‟



For small stimulus differences  s and s + ds

comparing

to threshold

Likelihood and tuning curves



• Population code formulation

• Methods for decoding:

population vector

Bayesian inference

maximum a posteriori

maximum likelihood

• Fisher information

Population coding



Cricket cercal cells coding wind velocity



Theunissen & Miller, 1991

RMS error in estimate

Population vector 



Cosine tuning:

Pop. vector:

For sufficiently large N,

is parallel to the direction of arm movement

Population coding in M1



The population vector is neither general nor optimal.

“Optimal”: Bayesian inference and MAP



By Bayes‟ law,

Introduce a cost function, L(s,sBayes); minimise mean cost.

For least squares,  L(s,sBayes) = (s – sBayes)
2 ;

solution is the conditional mean.

Bayesian inference



MAP: s* which maximizes p[s|r]

ML: s* which maximizes p[r|s]

Difference is the role of the prior: differ by factor p[s]/p[r]

For cercal data:

MAP and ML



E.g. Gaussian tuning curves

Decoding an arbitrary continuous stimulus 



Assume Poisson:

Assume independent:

Need to know full P[r|s]

Population response of 11 cells with Gaussian tuning curves



Apply ML: maximise ln P[r|s] with respect to s

Set derivative to zero, use sum = constant

From Gaussianity of tuning curves,

If all s same 



Apply MAP: maximise ln p[s|r] with respect to s

Set derivative to zero, use sum = constant

From Gaussianity of tuning curves,



Given this data:

Constant prior

Prior with mean -2, variance 1

MAP:



For stimulus s, have estimated sest

Bias: 

Cramer-Rao bound:

Mean square error:

Variance:

Fisher information

How good is our estimate? 



Alternatively:

For the Gaussian tuning curves w/Poisson statistics:

Fisher information



Quantifies local stimulus discriminability

Fisher information for Gaussian tuning curves 



Do narrow or broad tuning curves produce better encodings?

Approximate:

Thus,  Narrow tuning curves are better

But not in higher dimensions!



Recall d' = mean difference/standard deviation

Can also decode and discriminate using decoded values.

Trying to discriminate s and s+Ds:

Difference in estimate is Ds  (unbiased)

variance in estimate is 1/IF(s).



Fisher information and discrimination


