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Entropy and information

Information quantifies how independent r and s are:

I(s;r) = DKL [P(r,s), P(r)P(s)]



 Need to know the conditional distribution P(s|r) or P(r|s).

Take a particular stimulus s=s0 and repeat many times to obtain P(r|s0).

Compute variability due to noise: noise entropy

Information is the difference between the total response entropy and 

the mean noise entropy: 

I(s;r) = H[P(r)] – Ss P(s) H[P(r|s)] .

Entropy and information



Entropy and information

Information is symmetric in r and s

Examples:

response is unrelated to stimulus: p[r|s] = p[r]

response is perfectly predicted by stimulus: p[r|s] = d(r-rs)



Binary distribution:

Entropy Information

Maximising information



Efficient coding



How can one compute the entropy 

and information of spike trains?

Strong et al., 1997; Panzeri et al.

Discretize the spike train into binary 

words w with letter size Dt, length T.

This takes into account correlations between

spikes on timescales TDt.

Compute pi = p(wi), then the naïve entropy is

Information in single cells: the direct method



Many information calculations are limited by 

sampling: hard to determine P(w) and P(w|s)

Systematic bias from undersampling.

Correction for finite size effects: 

Strong et al., 1997

Information in single cells: the direct method



Information is the difference 

between the variability driven by stimuli and 

that due to noise.

Take a stimulus sequence s and repeat many 

times.

For each time in the repeated stimulus, get a 

set of words P(w|s(t)).

Should average over all s with weight P(s); 

instead, average over time:

Hnoise =  < H[P(w|si)] >i.

Choose length of repeated sequence long enough 

to sample the noise entropy adequately.  

Finally, do as a function of word length T and

extrapolate to infinite T.

Reinagel and Reid, „00

Information in single cells: the direct method



Fly H1:

obtain information rate of 

~80 bits/sec or 1-2 bits/spike.

Information in single cells



Another example: temporal coding in the LGN (Reinagel and Reid „00)

Information in single cells



Apply the same procedure:

collect word distributions 

for a random, then repeated stimulus.

Information in single cells



Use this to quantify how

precise the code is,

and over what timescales

correlations are important.

Information in single cells



How much information does a single spike convey about the stimulus?

Key idea: the information that a spike gives about the stimulus is the reduction 

in entropy between the distribution of spike times not knowing the stimulus,

and the distribution of times knowing the stimulus.

The response to an (arbitrary) stimulus sequence s is r(t).

Without knowing that the stimulus was s, the probability of observing a spike

in a given bin is proportional to    , the mean rate, and the size of the bin.

Consider a bin Dt small enough that it can only contain a single spike. Then in

the bin at time t,

Information in single spikes



Now compute the entropy difference: ,

Assuming              , and using

In terms of information per spike (divide by        ): 

Note substitution of a time average for an average over the r ensemble.

 prior

 conditional

Information in single spikes



Given

note that:

• It doesn‟t depend explicitly on the stimulus

• The rate r does not have to mean rate of spikes; rate of any event.

• Information is limited by spike precision, which blurs r(t),

and the mean spike rate.

Compute as a function of Dt: 

Undersampled for small bins

Information in single spikes



How important is information in multispike patterns? 

The information in any given event can be computed as:

Define the synergy, the information gained from the joint symbol:

or equivalently,

Brenner et al., ‟00.

Negative synergy is called redundancy.

Synergy and redundancy



Brenner et al., ‟00.

In the identified neuron H1, compute information in a spike pair, separated

by an interval dt:

Multispike patterns



We can use the information about the stimulus to evaluate our

reduced dimensionality models.

Using information to evaluate neural models



Information in timing of 1 spike:

By definition

Using information to evaluate neural models



Given:

By definition Bayes‟ rule

Using information to evaluate neural models



Given:

By definition

So the information in the K-dimensional model is evaluated using 

the distribution of projections:

Bayes‟ rule Dimensionality reduction

Using information to evaluate neural models



Here we used information to evaluate reduced models of the Hodgkin-Huxley

neuron.

1D: STA only

2D: two covariance modes

Twist model

Using information to evaluate neural models



Just about every neuron adapts. Why?

•To stop the brain from tiring out

•To make better use of a limited 

dynamic range.

•To stop reporting already known facts

All reasonable ideas. 

What does that mean for coding?

What part of the signal is the brain meant

to read?

Adaptation can be mechanism for early 

sensory systems to make use of statistical 

Information about the environment. 

How can the brain interpret an adaptive

code? From The Basis of Sensation, Adrian (1929)

Adaptive coding



Rate, or spike frequency adaptation is a classic form of adaptation.

Let‟s go back to the picture of neural computation we discussed before:

Can adapt both:

the system‟s filters

the input/output relation (threshold function)

Both are observed, and in both cases, the observed adaptations can be

thought of as increasing information transmission through the system.

Information maximization as a principle of adaptive coding:

For optimum information transmission, coding strategy should adjust

to the statistics of the inputs.

To compute the best strategy, have to impose constraints (Stemmler&Koch)

e.g. the variance of the output, or the maximum firing rate.

Adaptation to stimulus statistics: efficient coding



Fly LMC cells. 

Measured contrast in

natural scenes.

If we constrain the maximum, the solution for the distribution of output

symbols is P(r) = constant = a. 

Take the output to be a nonlinear transformation on the input: r = g(s).

From



Laughlin ‟81.

Adaptation of the input/output relation



But is all adaptation to statistics on

an evolutionary scale? 

The world is highly fluctuating. 

Light intensities vary by 1010 over a day.

Expect adaptation to statistics to happen

dynamically, in real time.

Retina: observe adaptation to variance, 

or contrast, over 10s of seconds. 

Surprisingly slow: contrast gain control

effects after 100s of milliseconds. 

Also observed adaptation to spatial scale

on a similar timescale.
Smirnakis et al., „97

Dynamical adaptive coding



The H1 neuron of the fly visual system.

Rescales input/output relation with 

steady state stimulus statistics.

Brenner et al., „00

Dynamical adaptive coding



As we have seen already, extract the spike-triggered average

Dynamical adaptive coding



Compute the input/output relations,

as we described before:

s = stim . STA;

P(spike|s) = rave P(stim|s) / P(s)

Do it at different times in variance

modulation cycle.

Find ongoing normalisation with respect to

stimulus standard deviation

Dynamical adaptive coding



Take a more complex stimulus: randomly modulated white noise.

Not unlike natural stimuli (Ruderman and Bialek ‟97)

Dynamical adaptive coding: naturalistic stimuli



Find continuous rescaling

to variance envelope.

Dynamical adaptive coding



This should imply that information transmission is being maximized. 

We can compute the information directly and observe the timescale.

How much information is available about the stimulus fluctuations?

Return to two-state switching experiment.

Method:

Present n different white noise sequences, randomly ordered, 

throughout the variance modulation.  

Collect word responses indexed by time with respect to the cycle, P(w(t)).

Now divide according to probe identity, and compute

It(w;s) = H[P(w(t))] – Si P(si) H[P(w(t)|si)] ,    P(si) = 1/n;

Similarly, one can compute information about the variance: 

It(w;s) = H[P(w(t))] – Si P(si) H[P(w(t)|si)] ,   P(si) = ½;

Convert to information/spike by dividing at each time by mean # of spikes.

Dynamical information maximization



Tracking information in time



Tracking information in time: the variance



Maximising information transmission through optimal filtering

 predicting receptive fields

Populations: synergy and redundancy in codes involving many neurons

 multi-information

Sparseness: the new efficient coding

Other fascinating subjects


