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Functional models of neural computation



Covariance analysis

Let’s develop some intuition for how this works: the Keat model

Keat, Reinagel, Reid and Meister, Predicting every spike. Neuron (2001)

• Spiking is controlled by a single filter

• Spikes happen generally on an upward threshold crossing of 

the filtered stimulus

 expect 2 modes, the filter F(t) and its time derivative F’(t)



Given a set of data, want to find the best reduced 

dimensional description.

The data are the set of stimuli that lead up to a spike,

Sn(t)     , where t = 1, 2, 3, …., D

Variance of a random variable = < (X-mean(X))2>

Covariance = < (X – mean(X))T (X – mean(X)) >

Compute the difference matrix between covariance matrix

of the spike-triggered stimuli and that of all stimuli  

Find its eigensystem to define the dimensions of interest



Eigensystem: 

any matrix M can be decomposed as

M = U V UT ,

where U is an orthogonal matrix;

V is a diagonal matrix, diag([l1,l2,..,lD]).

Each eigenvalue has a corresponding eigenvector,

the orthogonal columns of U.

The value of the eigenvalue classifies the eigenvectors

as belonging to 

column space = orthogonal basis for relevant dimensions  

null space = orthogonal basis for irrelevant dimensions

We will project the stimuli into the column space.



This method finds an orthogonal basis in which to

describe the data, and ranks each “axis” according to

its importance in capturing the data.

Related to principal component analysis.

Functional basis set.



Example:

An auditory neuron is responsible for detecting sound at

a certain frequency w.  Phase is not important.

The appropriate “directions” describing this neuron’s 

relevant feature space are 

Cos(wt) and Sin(wt).

This will describe any signal at that frequency, independent 

of phase:

cos(A+B) = cos(A) cos(B) - sin(A) sin(B)

 cos(wt + f) =  a cos(wt) + b sin(wt),

a = cos(f), b = -sin(f).

Note that a2 + b2 = 1; all such stimuli lie on a ring.
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Covariance analysis

Let’s try a real neuron: rat somatosensory cortex 

(Ras Petersen, Mathew Diamond, SISSA)
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Covariance analysis

Spike-triggered average:
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Covariance analysis

Is the neuron simply not very responsive to a white noise stimulus?



Covariance analysis

Prior Spike-

triggered

Difference



Covariance analysis
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Covariance analysis
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Basic types of computation: 

• integrators (H1)

• differentiators (retina, simple cells, single neurons)

• frequency-power detectors

(complex cells, somatosensory, auditory,

retina)



Beyond covariance analysis

1. Single, best filter determined by the first moment

2. A family of filters derived using the second moment

3. Use the entire distribution: information theoretic methods

 Find the dimensions that maximize the mutual information

between stimulus and spike

Removes requirement for Gaussian stimuli



Limitations

Not a completely “blind” procedure: 

have to have some idea of the appropriate stimulus space

Very complex stimuli: 

does a geometrical picture work or make sense?

Adaptation:

stimulus representations change with experience!

Rates vs spikes:

what is our model trying to do? What do we want to recover?
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Spike statistics

Stochastic process that generates a sequence of events:                 point process

Probability of an event at time t depends only on preceding event: renewal process

All events are statistically independent:                                         Poisson process

Homogeneous Poisson:  r(t) = r independent of time 

probability to see a spike only depends on the time you watch.

PT[n] = (rT)n exp(-rT)/n!

Exercise: the mean of this distribution is rT

the variance of this distribution is also rT.

The Fano factor = variance/mean = 1 for Poisson processes.

The CV = coefficient of variation = STD/mean = 1 for Poisson

Interspike interval distribution P(T) = r exp(-rT)



The Poisson model (homogeneous)

Probability of n spikes in time T 

as function of (rate  T)

Poisson approaches Gaussian 

for large rT (here = 10)



How good is the Poisson model? Fano Factor

Fano factor Data fit to: 

variance = A  meanB

A

B

Area MT



How good is the Poisson model? ISI analysis

ISI Distribution from an 

area MT Neuron

ISI distribution generated from 

a Poisson model with a 

Gaussian refractory period



How good is the Poisson Model? CV analysis

Coefficients of 

Variation for a 

set of V1 and MT 

Neurons

Poisson

Poisson with 
ref. period



Interval distribution of Hodgkin-Huxley neuron driven by noise



What is the language of single cells?

What are the elementary symbols of the code?  

Most typically, we think about the response as a firing rate, r(t), or a modulated 

spiking probability, P(r = spike|s(t)).

We measure spike times.

Implicit: a Poisson model, where spikes are generated randomly with 

local rate r(t).

However, most spike trains are not Poisson (refractoriness, internal dynamics).

Fine temporal structure might be meaningful.

Consider spike patterns or “words”, e.g.

• symbols including multiple spikes and the interval between

• retinal ganglion cells: “when” and “how much”



Spike Triggered Average  2-Spike Triggered Average
(10 ms separation)

2-Spike Triggered Average
(5 ms)

Multiple spike symbols from the fly motion sensitive neuron



Decoding

How well can we learn what the stimulus is by looking

at the neural responses?

Two approaches:

• devise explicit algorithms for extracting 

a stimulus estimate

• directly quantify the relationship between 

stimulus and response using information theory  



Starting with a rate response, r(t) and a stimulus, s(t), 

the optimal linear estimator finds the best kernel K such that:

Predicting the firing rate

is close to r(t), in the least squares sense.

Solving for K(t),



Stimulus reconstruction

t

K



Stimulus reconstruction



Stimulus reconstruction



Yang Dan, UC Berkeley

Reading minds: the LGN


