What is the neural code?

Sekuler lab, Brandeis

What is the neural code?

What is the neural code?

Alan Litke, UCSD

What is the neural code?

What is the neural code?

What is the neural code?

Encoding: how does a stimulus cause a pattern of responses?

- what are the responses and what are their characteristics?
- neural models:
what takes us from stimulus to response;
descriptive and mechanistic models, and the relation between them.
Decoding: what do these responses tell us about the stimulus?
- Implies some kind of decoding algorithm
- How to evaluate how good our algorithm is?

What is the neural code?

Single cells:
spike rate
spike times
spike intervals

What is the neural code?

Single cells:
spike rate: what does the firing rate correspond to? spike times: what in the stimulus triggers a spike? spike intervals: can patterns of spikes convey extra information?

What is the neural code?

Populations of cells:
population coding correlations between responses synergy and redundancy

Receptive fields and tuning curves

Tuning curve: $r=f(s)$

Gaussian tuning curve of a cortical (V1) neuron

Receptive fields and tuning curves

Tuning curve: $r=f(s)$

Cosine tuning curve of a motor cortical neuron

Receptive fields and tuning curves

Sigmoid/logistic tuning curve of a "stereo" V1 neuron

Higher brain areas represent increasingly complex features

Quian Quiroga, Reddy, Kreiman, Koch and Fried, Nature (2005)

More generally, we are interested in determining the relationship:

>	P(response \| stimulus) encoding

P(stimulus | response) decoding

Due to noise, this is a stochastic description.
Problem of dimensionality, both in response and in stimulus

Reverse correlation

Fast modulation of firing by dynamic stimuli

Feature extraction

Use reverse correlation to decide what each of these spiking events stands for, and so to either:
-- predict the time-varying firing rate
-- reconstruct the stimulus from the spikes

Reverse correlation

Basic idea: throw random stimuli at the system and collect the ones that cause a response

Typically, use Gaussian, white noise stimulus: an unbiased stimulus which samples all directions equally

Reverse correlation

Example: a neuron in the ELL of a fish

stimulus = fluctuating potential (generates electric field)

Spike-triggered Average

This can be done with other dimensions of stimulus as well
Spatio-temporal receptive field

Modeling spike encoding

Given a stimulus, when will the system spike?
Decompose the neural computation into a linear stage and a nonlinear stage.

Simple example: the integrate-and-fire neuron

To what feature in the stimulus is the system sensitive?
Gerstner, spike response model; Aguera y Arcas et al. 2001, 2003; Keat et al., 2001

Modeling spike encoding

spike-triggering
stimulus feature

decision function

The decision function is P (spike $\left.\mid \mathrm{x}_{1}\right)$.
Derive from data using Bayes' theorem:

$$
P\left(\text { spike } \mid x_{1}\right)=P(\text { spike }) P\left(x_{1} \mid \text { spike }\right) / P\left(x_{1}\right)
$$

$P\left(x_{1}\right)$ is the prior : the distribution of all projections onto f_{1}
$\mathrm{P}\left(\mathrm{x}_{1} \mid\right.$ spike $)$ is the spike-conditional ensemble :
the distribution of all projections onto f_{1} given there has been a spike
P (spike) is proportional to the mean firing rate

Models of neural function

spike-triggering
stimulus feature

decision function

Weaknesses

Reverse correlation: a geometric view

Functional models of neural response

spike-triggering stimulus features

multidimensional
decision function

Functional models of neural response

spike-triggering stimulus features

decision function

Functional models of neural response

spike-triggering
stimulus feature

decision function

Covariance analysis

Let's develop some intuition for how this works: the Keat model
Keat, Reinagel, Reid and Meister, Predicting every spike. Neuron (2001)

- Spiking is controlled by a single filter
- Spikes happen generally on an upward threshold crossing of the filtered stimulus
\rightarrow expect 2 modes, the filter $F(t)$ and its time derivative $F^{\prime}(\mathrm{t})$

Covariance analysis

Covariance analysis

Let's try a real neuron: rat somatosensory cortex
(Ras Petersen, Mathew Diamond, SISSA)

Record from single units in barrel cortex

Covariance analysis

Spike-triggered average:

Covariance analysis

Is the neuron simply not very responsive to a white noise stimulus?

Covariance analysis

Covariance analysis

Eigenspectrum
Leading modes

Covariance analysis

Input/output relations wrt first two filters, alone:
and in quadrature:

Covariance analysis

How about the other modes?

Next pair with +ve eigenvalues
Pair with -ve eigenvalues

Covariance analysis

Input/output relations for negative pair

Firing rate decreases with increasing projection: suppressive modes

Beyond covariance analysis

1. Single, best filter determined by the first moment
2. A family of filters derived using the second moment
3. Use the entire distribution: information theoretic methods
\rightarrow Find the dimensions that maximize the mutual information between stimulus and spike

Removes requirement for Gaussian stimuli

Limitations

Not a completely "blind" procedure: have to have some idea of the appropriate stimulus space

Very complex stimuli: does a geometrical picture work or make sense?

Rates vs spikes:
what is our model trying to do? What do we want to recover?

Adaptation:
stimulus representations change with experience!

