

Sekuler lab, Brandeis

Alan Litke, UCSD

Encoding: how does a stimulus cause a pattern of responses?

- what are the responses and what are their characteristics?
- neural models:
 - what takes us from stimulus to response;
 - descriptive and mechanistic models, and the relation between them.

Decoding: what do these responses tell us about the stimulus?

- Implies some kind of decoding algorithm
- How to evaluate how good our algorithm is?

Single cells: spike rate

spike times spike intervals

Single cells:

spike rate: what does the firing rate correspond to? spike times: what in the stimulus triggers a spike? spike intervals: can patterns of spikes convey extra information?

Populations of cells:

population coding correlations between responses synergy and redundancy

Receptive fields and tuning curves

Tuning curve: r = f(s)

Gaussian tuning curve of a cortical (V1) neuron

Receptive fields and tuning curves

Tuning curve: r = f(s)

Hand reaching direction

Cosine tuning curve of a motor cortical neuron

Receptive fields and tuning curves

Retinal disparity for a "near" object

Sigmoid/logistic tuning curve of a "stereo" V1 neuron

Higher brain areas represent increasingly complex features

Quian Quiroga, Reddy, Kreiman, Koch and Fried, Nature (2005)

More generally, we are interested in determining the relationship:

P(response | stimulus)

encoding

P(stimulus | response)

decoding

Due to noise, this is a stochastic description.

Problem of dimensionality, both in response and in stimulus

Reverse correlation

Fast modulation of firing by dynamic stimuli

Feature extraction

Use reverse correlation to decide what each of these spiking events stands for, and so to either:

- -- predict the time-varying firing rate
- -- reconstruct the stimulus from the spikes

Reverse correlation

Basic idea: throw random stimuli at the system and collect the ones that cause a response

Typically, use Gaussian, white noise stimulus: an unbiased stimulus which samples all directions equally

Reverse correlation

Example: a neuron in the ELL of a fish

This can be done with other dimensions of stimulus as well

Spatio-temporal receptive field

Modeling spike encoding

Given a stimulus, when will the system spike?

Decompose the neural computation into a linear stage and a nonlinear stage.

Simple example: the integrate-and-fire neuron

To what feature in the stimulus is the system sensitive?

Gerstner, spike response model; Aguera y Arcas et al. 2001, 2003; Keat et al., 2001

Modeling spike encoding

The decision function is $P(spike | x_1)$. Derive from data using Bayes' theorem:

 $P(spike | x_1) = P(spike) P(x_1 | spike) / P(x_1)$

 $P(x_1)$ is the *prior* : the distribution of all projections onto $f_1 P(x_1 | spike)$ is the *spike-conditional ensemble* :

the distribution of all projections onto f_1 given there has been a spike P(spike) is proportional to the mean firing rate

Models of neural function

Reverse correlation: a geometric view

Functional models of neural response

Functional models of neural response

Functional models of neural response

Let's develop some intuition for how this works: the Keat model Keat, Reinagel, Reid and Meister, Predicting every spike. Neuron (2001)

- Spiking is controlled by a single filter
- Spikes happen generally on an upward threshold crossing of the filtered stimulus
- \rightarrow expect 2 modes, the filter F(t) and its time derivative F'(t)

Let's try a real neuron: rat somatosensory cortex (Ras Petersen, Mathew Diamond, SISSA)

Record from single units in barrel cortex

Spike-triggered average:

Is the neuron simply not very responsive to a white noise stimulus?

Eigenspectrum

Leading modes

Input/output relations wrt first two filters, alone:

and in quadrature:

How about the other modes?

Input/output relations for negative pair

Firing rate *decreases* with increasing projection: suppressive modes

Beyond covariance analysis

- 1. Single, best filter determined by the first moment
- 2. A family of filters derived using the second moment
- 3. Use the entire distribution: information theoretic methods
 - → Find the dimensions that maximize the *mutual information* between stimulus and spike

Removes requirement for Gaussian stimuli

Limitations

Not a completely "blind" procedure:

have to have some idea of the appropriate stimulus space

Very complex stimuli:

does a geometrical picture work or make sense?

Rates vs spikes:

what is our model trying to do? What do we want to recover?

Adaptation:

stimulus representations change with experience!