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CSE/NB 528
Lecture 14: Reinforcement Learning

(Chapter 9)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html
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Today’s Agenda

Reinforcement Learning
What is reinforcement learning? 
Classical conditioning

Learning to salivate
(predicting reward)

Predicting Delayed Rewards
Temporal Difference Learning

Learning to Act
Q-learning
Actor-Critic Architecture
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Some Supervised Learning Demos on the Web

Function Approximation:
http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html

Pattern Recognition
http://eecs.wsu.edu/~cook/ai/lectures/applets/hnn/JRec.html

Image Compression       
http://neuron.eng.wayne.edu/bpImageCompression9PLUS/bp9PLUS.html

Backpropagation for Control: Ball Balancing
http://neuron.eng.wayne.edu/bpBallBalancing/ball5.html

http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html
http://eecs.wsu.edu/~cook/ai/lectures/applets/hnn/JRec.html
http://neuron.eng.wayne.edu/bpImageCompression9PLUS/bp9PLUS.html
http://neuron.eng.wayne.edu/bpBallBalancing/ball5.html
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Humans don’t get exact supervisory signals 
(commands for muscles) for learning to talk, walk, 

ride a bicycle, play the piano, drive, etc.

We learn by trial-and-error and by watching others

Might get “rewards and punishments” along the way

Enter…Reinforcement Learning
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The Reinforcement Learning “Agent”

Agent

Environment

State
ut

Reward
rt

Action
at
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The Reinforcement Learning Framework

Unsupervised learning: Learn the hidden causes of inputs

Supervised learning: Learn a function based on training 
examples of (input, desired output) pairs

Reinforcement Learning: Learn the best action for any 
given state so as to maximize total expected (future) reward

Learn by trial and error
Intermediate between unsupervised and supervised learning
Instead of explicit teaching signal (or desired output), you get
rewards or punishments
Inspired by classical conditioning experiments (remember 
Pavlov’s hyper-salivating dog?)
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Early Results: Pavlov and his Dog

Classical (Pavlovian) 
conditioning experiments 

Training: Bell Food

After: Bell Salivate

Conditioned stimulus 
(bell) predicts future 
reward (food)

(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)
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Predicting Reward

Stimulus u = 0 or 1

Expected reward v = wu

Delivered reward = r

Learn w by minimizing (r – v)2

Prediction error δ = (r – v)

For small ε and u = 1, 
Average value of w = 

uvrww )( −+→ ε (same as the delta rule; also 
called Rescorla-Wagner rule)

)( wrww −+→ ε
rw ≈
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Predicting Reward during Conditioning

Reward r present (conditioning)

Reward removed (“extinction”)

Reward presented 
50% of the trials

(r = 1, ε = 0.5)
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Predicting Delayed Rewards

In more realistic cases, reward is typically delivered at the 
end (when you know whether you succeeded or not)

Time: 0 ≤ t ≤ T with stimulus u(t) and reward r(t) at each 
time step t (Note: r(t) can be zero)

Key Idea: Make the output v(t) predict total expected future 
reward starting from time t
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Learning to Predict Delayed Rewards

Use a set of modifiable weights w(t) and predict based on all 
past stimuli u(t):

Would like to find w(τ) that minimize:

)()()(
0

ττ
τ

−=∑
=

tuwtv
t

2

0
)()( ⎟
⎠

⎞
⎜
⎝

⎛
−+∑

−

=

tvtr
tT

τ

τ

Yes, BUT…not yet available are future rewards

(Can we minimize this using 
gradient descent and delta rule?)
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Temporal Difference (TD) Learning

Key Idea: Rewrite squared error to get rid of future terms:

Temporal Difference (TD) Learning:
For each time step t, do:

For all τ (0 ≤ τ ≤ t), do:
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Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

Prediction error δ for each time step
(over many trials)
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Reward Prediction Error Signal in Monkeys?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Before Training

After Training

Reward Prediction error?

No error
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More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

Negative error
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That’s great, but how 
does all that math help 
me get food in a maze?
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Using Reward Predictions to Select Actions

Suppose you have computed a “Value” for each action

Q(a) = value (predicted reward) for executing action a
Higher if action yields more reward, lower otherwise

Can select actions probabilistically according to their value:

∑
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selects more uniformly)
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Simple Example: Bee Foraging

http://svi.cps.utexas.edu/bee_on_flower_original.htm

Experiment: Bees select either 
yellow (y) or blue (b) flowers 
based on nectar reward

Idea: Value of yellow/blue = 
average reward obtained so far

Yum!
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Simulating Bees

β = 1 (exploration possible)

β = 50 β = 50 (mostly exploitation)

1

2

=

=

b

y

r

r

2

1

=

=

b

y

r

r

Q
y

b



20R. Rao, 528: Lecture 14

Forget bees, how do I get 
to the food in the maze?
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Selecting Actions when Reward is Delayed

States: A, B, or C

Possible actions at 
any state: Left (L) or 
Right (R)

If you randomly 
choose to go L or R 
(random “policy”), 
what is the value v of 
each state?
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Policy Evaluation

For random policy:

Can learn this using 
TD learning:
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Let v(u) = w(u)
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Maze Value Learning for Random Policy

1.75
2.5

1

Once I know the values, I can pick the 
action that leads to the higher valued state!
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Selecting Actions based on Values

2.5 1
Values act as 

surrogate immediate 
rewards Locally 

optimal choice leads 
to globally optimal 
policy (for Markov 

environments)
Related to Dynamic 
Programming in CS

(see appendix in text)
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Q learning

A simple method for action selection based on action values 
(or Q values) Q(x,a) where x is a state and a is an action

1. Let u be the current state. Select an action a according to:

2. Execute a and record new state u’ and reward r. Update Q:

3. Repeat until an end state is reached
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Another Variant: Actor-Critic Learning

Two separate components: Actor (maintains policy) and 
Critic (maintains value of each state)

1.   Critic Learning (“Policy Evaluation”): 
Value of state u = v(u) = w(u)

2.   Actor Learning (“Policy Improvement”):

3. Interleave 1 and 2
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Use this to select an action a in u

(same as TD rule)

For all a’:
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Actor-Critic Learning in the Maze Task

Probability of going Left at a location
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Demo of Reinforcement Learning in a Robot
(from http://sysplan.nams.kyushu-

u.ac.jp/gen/papers/JavaDemoML97/robodemo.html )

http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
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Things to do:

Work on mini-project

Next class: 
Course Summary
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