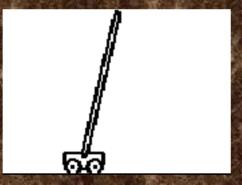
CSE/NB 528 Lecture 14: Reinforcement Learning (Chapter 9)



	-	+	ŧ	ł	-	ł		G
			ŧ	ł	ł			•
6			ł	•	+	ł		•
			ł	ł	ł	╞	ł	•
			ł	ŧ		ł	ł	•
		ŧ	۴	+	ł	ł	ŧ	ŧ

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg Lecture figures are from Dayan & Abbott's book http://people.brandeis.edu/~abbott/book/index.html

R. Rao, 528: Lecture 14

Today's Agenda

Reinforcement Learning

- ⇔ What is reinforcement learning?
- Classical conditioning
 - Learning to salivate (predicting reward)
- Predicting Delayed Rewards
 - Temporal Difference Learning
- Learning to Act
 - Q-learning
 - Actor-Critic Architecture

Some Supervised Learning Demos on the Web

Function Approximation:

http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html

Pattern Recognition

http://eecs.wsu.edu/~cook/ai/lectures/applets/hnn/JRec.html

Image Compression

http://neuron.eng.wayne.edu/bpImageCompression9PLUS/bp9PLUS.html

Backpropagation for Control: Ball Balancing

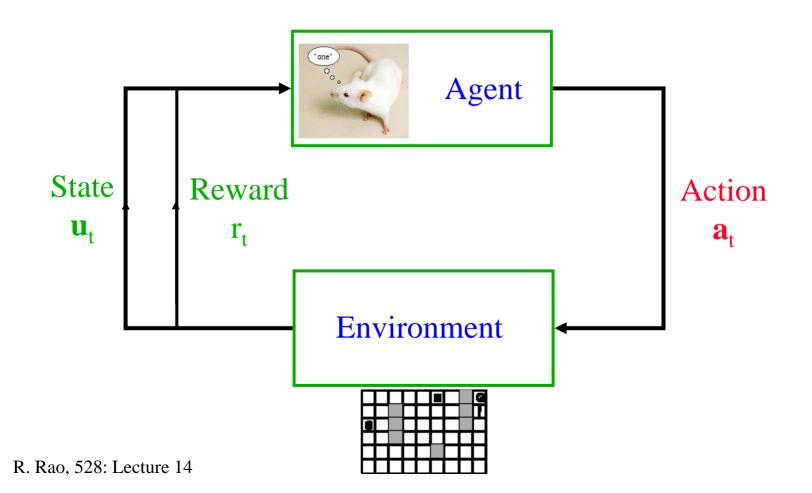
http://neuron.eng.wayne.edu/bpBallBalancing/ball5.html

Humans don't get exact supervisory signals (commands for muscles) for learning to talk, walk, ride a bicycle, play the piano, drive, etc.

We learn by trial-and-error and by watching others Might get "rewards and punishments" along the way

Enter...Reinforcement Learning

The Reinforcement Learning "Agent"

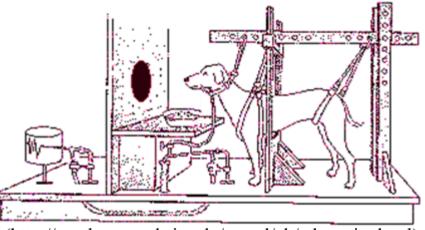


The Reinforcement Learning Framework

- Unsupervised learning: Learn the hidden causes of inputs
- Supervised learning: Learn a function based on training examples of (input, desired output) pairs
- Reinforcement Learning: Learn the best action for any given state so as to maximize total expected (future) reward
 - Learn by trial and error
 - Intermediate between unsupervised and supervised learning Instead of explicit teaching signal (or desired output), you get *rewards or punishments*
 - Inspired by <u>classical conditioning</u> experiments (remember Pavlov's hyper-salivating dog?)

Early Results: Pavlov and his Dog

- Classical (Pavlovian) conditioning experiments
- → <u>Training</u>: Bell → Food
- ◆ <u>After</u>: Bell → Salivate
- Conditioned stimulus (bell) predicts future reward (food)



(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)

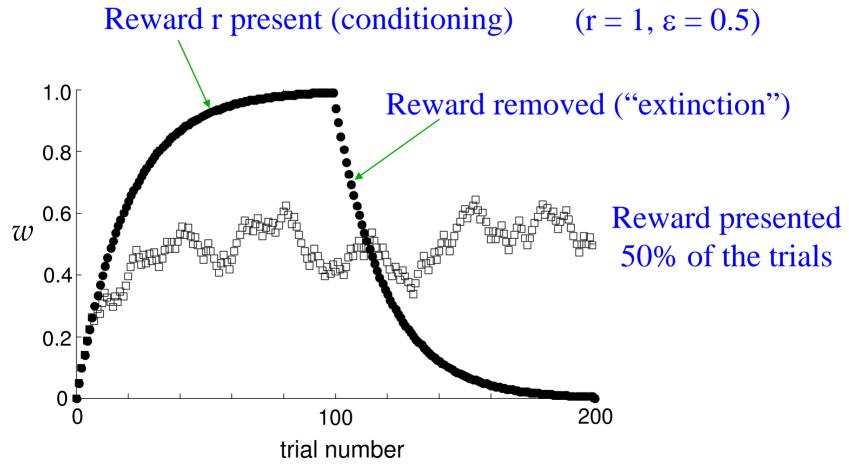
Predicting Reward

- Stimulus u = 0 or 1
- Expected reward v = wu
- Delivered reward = r
- Learn w by minimizing $(r v)^2$ $w \rightarrow w + \mathcal{E}(r - v)u$

(same as the delta rule; also called Rescorla-Wagner rule)

- Prediction error $\delta = (r v)$
- ◆ For small ε and u = 1, w → w + ε(r w)
 ⇒ Average value of w = ⟨w⟩ ≈ ⟨r⟩

Predicting Reward during Conditioning



R. Rao, 528: Lecture 14

Predicting Delayed Rewards

- In more realistic cases, reward is typically delivered at the end (when you know whether you succeeded or not)
- ✦ Time: $0 \le t \le T$ with stimulus u(t) and reward r(t) at each time step t (Note: r(t) can be zero)
- Key Idea: Make the output v(t) predict total expected future reward starting from time t

$$v(t) \approx \left\langle \sum_{\tau=0}^{T-t} r(t+\tau) \right\rangle$$

Learning to Predict Delayed Rewards

Use a set of modifiable weights w(t) and predict based on all past stimuli u(t):

$$v(t) = \sum_{\tau=0}^{t} w(\tau)u(t-\tau)$$

• Would like to find $w(\tau)$ that minimize:

$\int T-t$	2
$\sum r(t+\tau) - v(t)$	
$\tau = 0$	/

(Can we minimize this using gradient descent and delta rule?)

Yes, BUT...not yet available are future rewards

Temporal Difference (TD) Learning

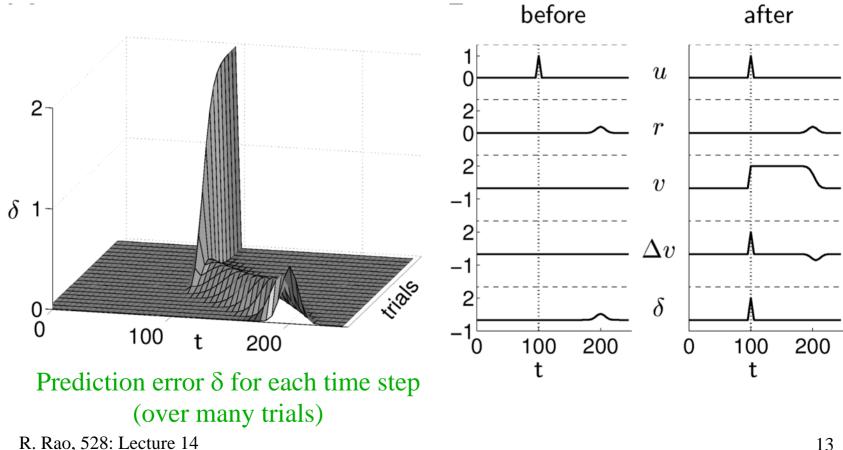
Key Idea: Rewrite squared error to get rid of future terms:

$$\left(\sum_{\tau=0}^{T-t} r(t+\tau) - v(t)\right)^2 = \left(r(t) + \sum_{\tau=0}^{T-t-1} r(t+1+\tau) - v(t)\right)^2$$
$$\approx \left(r(t) + v(t+1) - v(t)\right)^2$$

★ Temporal Difference (TD) Learning: For each time step t, do: For all τ (0 ≤ τ ≤ t), do: $v(t) = \sum_{\tau=0}^{t} w(\tau)u(t-\tau)$ $w(\tau) \rightarrow w(\tau) + \varepsilon [r(t) + v(t+1) - v(t)] u(t-\tau)$ Expected future reward Prediction

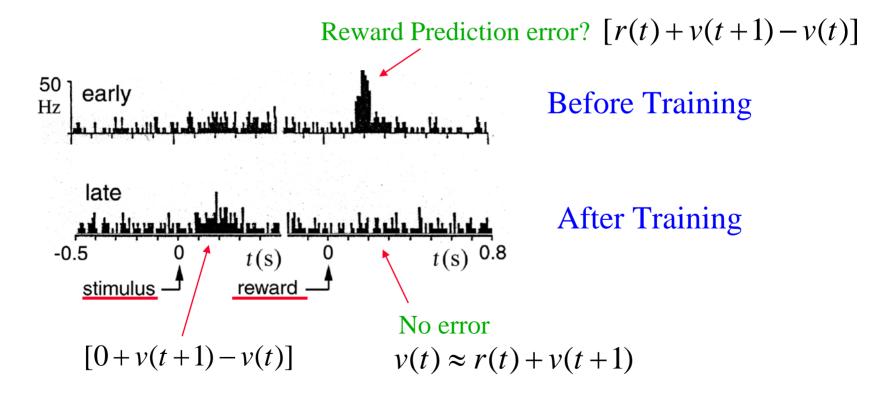
Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200



Reward Prediction Error Signal in Monkeys?

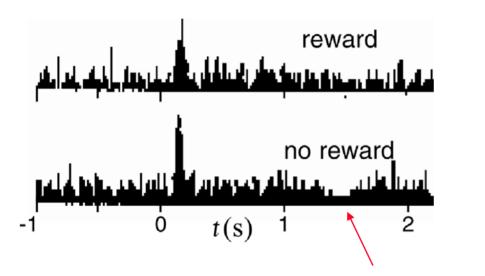
Dopaminergic cells in Ventral Tegmental Area (VTA)



R. Rao, 528: Lecture 14

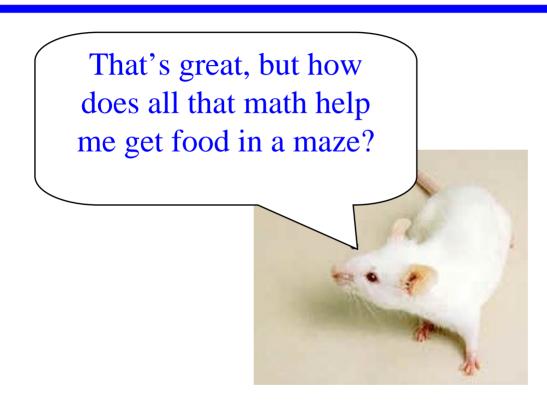
More Evidence for Prediction Error Signals

Dopaminergic cells in VTA



Negative error r(t) = 0, v(t+1) = 0

[r(t) + v(t+1) - v(t)] = -v(t)



Using Reward Predictions to Select Actions

- Suppose you have computed a "Value" for each action
- *Q*(*a*) = value (predicted reward) for executing action *a*

 Higher if action yields more reward, lower otherwise
- Can select actions probabilistically according to their value:

$$P(a) = \frac{\exp(\beta Q(a))}{\sum_{a'} \exp(\beta Q(a'))}$$

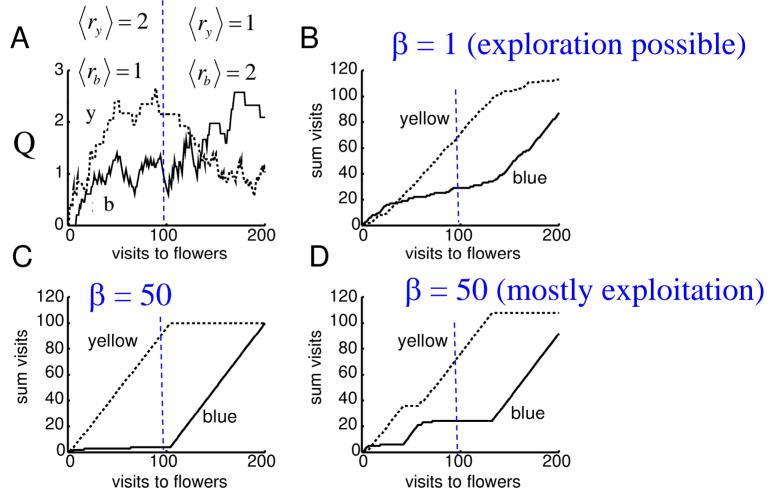
(High β selects actions with highest Q value. Low β selects more uniformly)

Simple Example: Bee Foraging

- <u>Experiment</u>: Bees select either yellow (y) or blue (b) flowers based on nectar reward
- ★ Idea: Value of yellow/blue = average reward obtained so far $Q(y) \rightarrow Q(y) + \varepsilon(r_y - Q(y)) \begin{cases} \text{delta rule} \\ (\text{running}) \\ \text{average} \end{cases}$

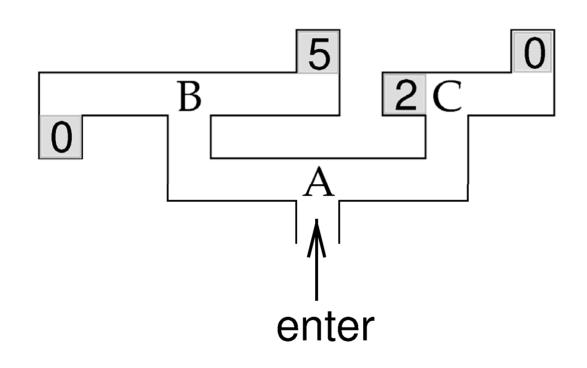
$$P(y) = \frac{\exp(\beta Q(y))}{\exp(\beta Q(y)) + \exp(\beta Q(b))}$$
$$P(b) = 1 - P(y)$$

Simulating Bees



R. Rao, 528: Lecture 14

Selecting Actions when Reward is Delayed

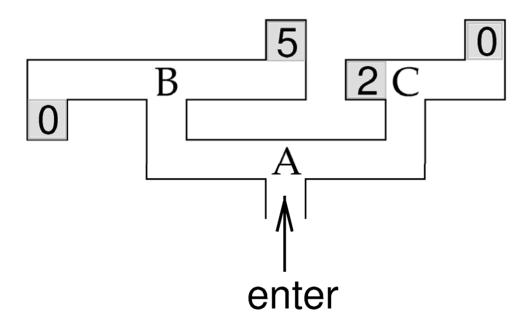


States: A, B, or C

Possible actions at any state: Left (L) or Right (R)

If you randomly choose to go L or R (random "policy"), what is the *value v of each state*?

Policy Evaluation

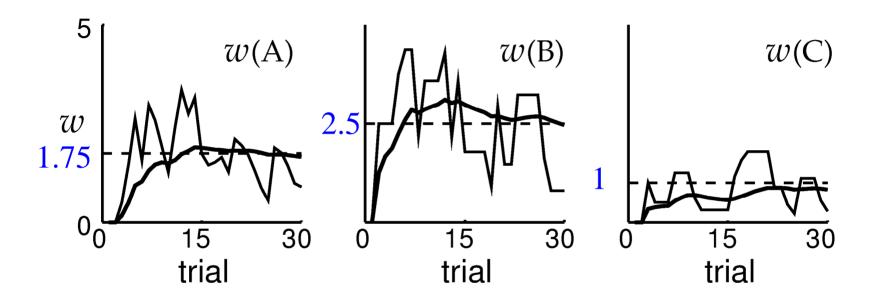


For random policy: $v(B) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 5 = 2.5$ $v(C) = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1$ $v(A) = \frac{1}{2} \cdot v(B) + \frac{1}{2} \cdot v(C) = 1.75$

(Location, action) \Rightarrow new location $(u,a) \Rightarrow u'$ Let v(u) = w(u) $w(u) \rightarrow w(u)$ Can learn this using TD learning:

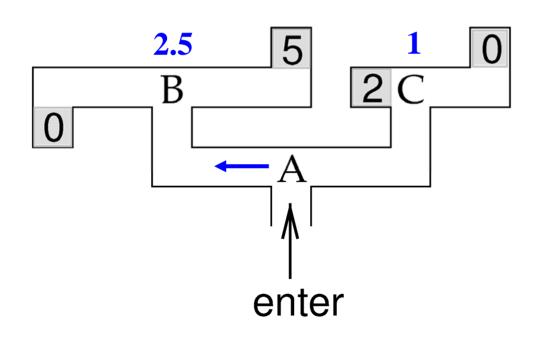
$$w(u) \to w(u) + \varepsilon \left[r_a(u) + v(u') - v(u) \right]$$

Maze Value Learning for Random Policy



Once I know the values, I can pick the action that leads to the higher valued state!

Selecting Actions based on Values



Values act as surrogate immediate rewards \rightarrow Locally optimal choice leads to globally optimal policy (for Markov environments) Related to *Dynamic* **Programming** in CS (see appendix in text)

Q learning

- A simple method for action selection based on action values (or *Q* values) *Q*(*x*,*a*) where *x* is a state and *a* is an action
- 1. Let *u* be the current state. Select an action *a* according to: $P(a) = \frac{\exp(\beta Q(u, a))}{\sum_{a'} \exp(\beta Q(u, a'))}$
- 2. Execute *a* and record new state *u'* and reward *r*. Update Q: $Q(u,a) \rightarrow Q(u,a) + \varepsilon(r + \max_{a'} Q(u',a') - Q(u,a))$
- 3. Repeat until an end state is reached

Another Variant: Actor-Critic Learning

- Two separate components: Actor (maintains policy) and Critic (maintains value of each state)
- 1. <u>Critic Learning ("Policy Evaluation")</u>: Value of state u = v(u) = w(u) $w(u) \rightarrow w(u) + \mathcal{E}[r_a(u) + v(u') - v(u)]$ (same as TD rule)
- 2. <u>Actor Learning ("Policy Improvement"):</u>

$$P(a;u) = \frac{\exp(\beta Q_a(u))}{\sum_{b} \exp(\beta Q_b(u))}$$

Use this to select an action *a* in *u*

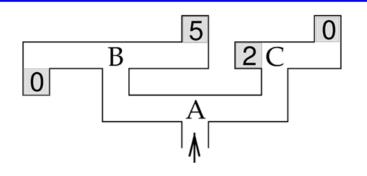
For all *a*':

$$Q_{a'}(u) \to Q_{a'}(u) + \varepsilon[r_a(u) + v(u') - v(u)](\delta_{aa'} - P(a';u))$$

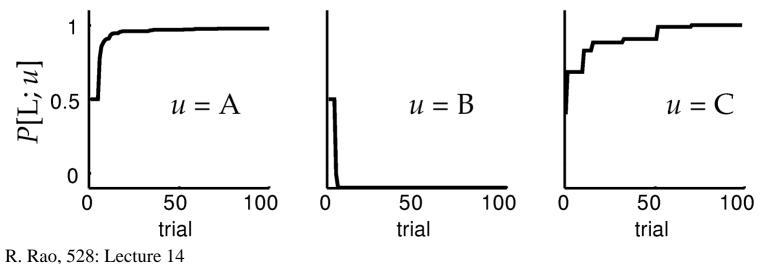
3. <u>Interleave 1 and 2</u>

R. Rao, 528: Lecture 14

Actor-Critic Learning in the Maze Task



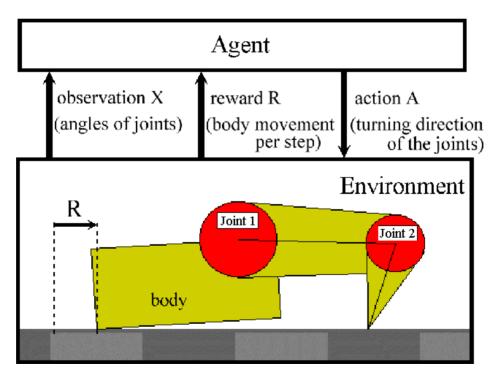
Probability of going Left at a location



Demo of Reinforcement Learning in a Robot

(from http://sysplan.nams.kyushu-

u.ac.jp/gen/papers/JavaDemoML97/robodemo.html)



Things to do:

Work on mini-project

