
1R. Rao, 528: Lecture 13

CSE/NB 528
Lecture 13: Supervised Learning

(Chapter 8)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html

2R. Rao, 528: Lecture 13

What’s on the menu today?

Supervised Learning
Why supervised learning?

Classification
Function Approximation

Perceptrons & Learning Rule
Linear Separability: Minsky-Papert deliver the bad news
Multilayer networks to the rescue
Function Approximation
Radial Basis Function Networks
Sigmoid Networks
Backpropagating (errors)

(Copyright, Gary Larson)

3R. Rao, 528: Lecture 13

Example: Face Detection

How do we build a classifier to distinguish
between faces and other objects?

4R. Rao, 528: Lecture 13

The Classification Problem
denotes +1 (faces)

denotes -1 (other)Faces

Other objects

Idea: Find a separating hyperplane (line in this case)

5R. Rao, 528: Lecture 13

Supervised Learning

Two Primary Tasks
1. Classification

Inputs u1, u2, … and discrete classes C1, C2, …, Ck
Training examples: (u1, C2), (u2, C7), etc.
Learn the mapping from an arbitrary input to its class
Example: Inputs = images, output classes = face, not a face

2. Function Approximation (regression)
Inputs u1, u2, … and continuous outputs v1, v2, …
Training examples: (input, desired output) pairs
Learn to map an arbitrary input to its corresponding output
Example: Highway driving
Input = road image, output = steering angle

6R. Rao, 528: Lecture 13

Classification using “Perceptrons”

Fancy name for a type of layered feedforward networks

Uses artificial neurons (“units”) with binary inputs and
outputs

Multilayer
Single-layer

7R. Rao, 528: Lecture 13

Perceptrons use “Threshold Units”

Artificial neuron:
m binary inputs (-1 or 1) and 1 output (-1 or 1)
Synaptic weights wij
Threshold μi

Inputs uj
(-1 or +1)

Output vi
(-1 or +1)

Weighted Sum Threshold

Θ(x) = 1 if x ≥ 0 and -1 if x < 0

)(ij
j

iji uwv μ−Θ= ∑

8R. Rao, 528: Lecture 13

What does a Perceptron compute?

Consider a single-layer perceptron
Weighted sum forms a linear hyperplane

Everything on one side of hyperplane is in class 1 (output =
+1) and everything on other side is class 2 (output = -1)
Any function that is linearly separable can be computed by
a perceptron

0=−∑ ij
j

ijuw μ

9R. Rao, 528: Lecture 13

Linear Separability

Example: AND is linearly separable
a AND b = 1 if and only if a = 1 and b = 1

Linear hyperplane
v

u1 u2

μ = 1.5
(1,1)

1

1

-1

-1

u1

u2

Perceptron for AND

10R. Rao, 528: Lecture 13

Perceptron Learning Rule

Given inputs u and desired output vd, adjust w as follows:

1. Compute error signal e = (vd – v) where v is the current output

2. Change weights according to the error e
⇒ For positive inputs, increase weights if error is positive and

decrease if error is negative (opposite for negative inputs)

uww)(vvd −+→ ε BABA with replace means →

11R. Rao, 528: Lecture 13

What about the XOR function?

1
1

-1

-1

u1

u2
-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR ?

Can a straight line separate the +1
outputs from the -1 outputs?

12R. Rao, 528: Lecture 13

Linear Inseparability

Single-layer perceptron with threshold units fails if
classification task is not linearly separable

Example: XOR
No single line can separate the “yes” (+1)
outputs from the “no” (-1) outputs!

Minsky and Papert’s book
showing such negative results put
a damper on neural networks
research for over a decade!

(1,1)

1
1

-1

-1

u1

u2

X

13R. Rao, 528: Lecture 13

How do we deal with linear inseparability?

14R. Rao, 528: Lecture 13

Solution in 1980s: Multilayer perceptrons

Removes limitations of single-layer networks
Can solve XOR

An example of a two-layer perceptron that computes XOR

Output is +1 if and only if x + y – 2Θ(x + y – 1.5) – 0.5 > 0
x y

(Here, inputs x, y are assumed to be 0 or 1)

15R. Rao, 528: Lecture 13

x y

out

x

y

1

1

2

1 2

2
1

1
1− 1−

2

1−

1−1

2
1

− ?

Multilayer Perceptron: What does it do?

16R. Rao, 528: Lecture 13

x y

out

x

y

1

1

2

1 2

0
2
11 >−+ yx

0
2
11 <−+ yx

=-1

=1

2
1

1
1−

Example: Perceptrons as Constraint Satisfaction Networks

xy
2
11+=

17R. Rao, 528: Lecture 13

x y

out

x

y

1

1

2

1 2

02 >−− yx 02 <−− yx

=-1

=-1=1

=1

1−

2

1−

Example: Perceptrons as Constraint Satisfaction Networks

18R. Rao, 528: Lecture 13
x y

out

x

y

1

1

2

1 2

=-1

=-1=1

=1
1−1

2
1

− -
2
1

− >0

Example: Perceptrons as Constraint Satisfaction Networks

19R. Rao, 528: Lecture 13
x y

out

x

y

1

1

2

1 2

02 <−− yx

0
2
11 >−+ yx

=-1

=-1=1

=1

2
1

1
1− 1−

2

1−

1−1

2
1

−

Perceptrons as Constraint Satisfaction Networks

20R. Rao, 528: Lecture 13

What if you want to approximate a
continuous function?

Can a network learn to drive?

21R. Rao, 528: Lecture 13

Example Network

Input u = (u1 u2 … u960) = image pixels

Steering angle

Current image

Desired Output:
d = (d1 d2 … d30)

22R. Rao, 528: Lecture 13

Function Approximation

We want networks that can learn a function
Network maps real-valued inputs to real-valued outputs
Want to generalize to predict outputs for new inputs
Idea: Given input data, map input to desired output by
adapting weights

23R. Rao, 528: Lecture 13

Radial Basis Function (RBF) Networks

input nodes

output neurons

one layer of
hidden neurons

24R. Rao, 528: Lecture 13

Radial Basis Function Networks

“activation” function:

∑
=

−=
n

i
jiij xa

1

2
,)(μ

input nodes

output neurons

25R. Rao, 528: Lecture 13

Radial Basis Function Networks

2

2

2)(σ
a

eah
−

=

Hidden layer:
(Gaussian bell-shaped function)

a

Ψ(a)

input nodes

output neurons

h(a)

26R. Rao, 528: Lecture 13

Radial Basis Function Networks

output of network:

∑=
i

ijij hw ,out

input nodes

output neurons

• Main Idea: Use a mixture of Gaussian
functions of the input to approximate
the output

• Gaussians are called “basis functions”

27R. Rao, 528: Lecture 13

RBF networks

Radial basis functions
Hidden units store means and
variances
Hidden units compute a
Gaussian function of inputs
x1,…xn

Learn weights wi, means μi,
and variances σi by
minimizing squared error
function (gradient descent
learning)

y

28R. Rao, 528: Lecture 13

RBF Networks versus Multilayer Perceptrons

RBF: MLP:

input nodes

output neurons

29R. Rao, 528: Lecture 13

Input nodes
ae

ag β−+
=

1
1)(

a

Ψ(a)
1

Sigmoid function:

Sigmoid is a non-linear “squashing” function: Squashes input to
be between 0 and 1. The parameter β controls the slope.

g(a)

)()(i
i

i
T uwggv ∑== uw

w

u = (u1 u2 u3)T

Output

Another Model: Sigmoidal Networks

30R. Rao, 528: Lecture 13

Gradient-Descent Learning (“Hill-Climbing”)

Given training examples (um,dm) (m = 1, …, N), define a
sum of squared output errors function (also called a cost
function or “energy” function)

2)(
2
1)(m

m

m vdE −= ∑w

)(mTm gv uw=where

31R. Rao, 528: Lecture 13

Would like to change w so that E(w) is minimized
Gradient Descent: Change w in proportion to –dE/dw
(why?)

mmTmm

m

m
mm

m
gvd

d
dvvd

d
dE

d
dE

uuw
ww

w
ww

)()()(′−−=−−=

−→

∑∑

ε

Derivative of sigmoid

Gradient-Descent Learning (“Hill-Climbing”)

32R. Rao, 528: Lecture 13

“Stochastic” Gradient Descent

What if the inputs only arrive one-by-one?

Stochastic gradient descent approximates sum over all
inputs with an “on-line” running sum:

mmTmm gvd
d
dE

d
dE

uuw
w

w
ww

)()(1

1

′−−=

−→ ε
Also known as
the “delta rule”
or “LMS (least
mean square)

rule”
delta = error

33R. Rao, 528: Lecture 13

But wait….

What if we have multiple layers?

Delta rule can be used to
adapt these weights

How do we adapt these?

Input u = (u1 u2 … uK)T

Output v = (v1 v2 … vJ)T; Desired = d

34R. Rao, 528: Lecture 13

Enter…the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)

35R. Rao, 528: Lecture 13

Backpropagation: Uppermost layer (delta rule)

j
j

jjiii
ji

ji
jiji

xxWgvd
dW
dE

dW
dEWW

)()(∑′−−=

−→ ε

{delta rule}

)(j
j

jii xWgv ∑=

ku

jx

Learning rule for hidden-output weights W:

2)(
2
1),(i

i
i vdE −= ∑wW

{gradient descent}

36R. Rao, 528: Lecture 13

Backpropagation: Inner layer (chain rule)

)(j
j

ji
m
i xWgv ∑=

m
ku

⎥
⎦

⎤
⎢
⎣

⎡ ′⋅⎥
⎦

⎤
⎢
⎣

⎡
′−−=

⋅=−→

∑∑∑ m
k

m
k

k
kjji

j

m
jji

m
i

m
i

imkj

kj

j

jkjkj
kjkj

uuwgWxWgvd
dw
dE

dw
dx

dx
dE

dw
dE

dw
dEww

)()()(

 :But

,

ε {chain rule}

)(m
k

k
kj

m
j uwgx ∑=

Learning rule for input-hidden weights w:

2)(
2
1),(i

i
i vdE −= ∑wW

37R. Rao, 528: Lecture 13

Example: Learning to Drive

38R. Rao, 528: Lecture 13

Example Network

(Pomerleau, 1992)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf

39R. Rao, 528: Lecture 13

Example Network

Training Input u = (u1 u2 … u960) = image pixels

Get steering angle

Get current
camera image

Training Output:
d = (d1 d2 … d30)

40R. Rao, 528: Lecture 13

Training the network using backprop

2)(
2
1),(i

i
i vdE −= ∑wW

Start with random weights W, w

Given input u, network produces
output v

Use backprop to learn W and w
that minimize total error over all
output units (labeled i):

))((k
k

kj
j

jii uwgWgv ∑∑=

ku

41R. Rao, 528: Lecture 13

Learning to Drive using Backprop

One of the learned
“road features” wi

42R. Rao, 528: Lecture 13

ALVINN (Autonomous Land Vehicle in a Neural Network)

(Pomerleau, 1992)

Trained using human
driver + camera images

After learning:
Drove up to 70 mph on
highway
Up to 22 miles without
intervention
Drove cross-country
largely autonomously

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf

43R. Rao, 528: Lecture 13

Another Example: Face Detection

(Rowley, Baluja & Kanade, 1998)

Output between -1 (no face) and +1 (face present)

http://vasc.ri.cmu.edu/NNFaceDetector/

44R. Rao, 528: Lecture 13

Face Detection by a Neural Network

(Rowley, Baluja & Kanade, 1998)

http://vasc.ri.cmu.edu/NNFaceDetector/

45R. Rao, 528: Lecture 13

Recurrent Supervised Networks

Why use recurrent networks?
To keep track of recent history and context
Can learn temporal patterns (time series or oscillations)

Examples
Recurrent backpropagation networks: for small
sequences, unfold network in time dimension to get multi-
layered network and use backpropagation learning
Partially recurrent networks E.g. Elman net

46R. Rao, 528: Lecture 13

Partially Recurrent Networks

Example
Elman net

Partially recurrent
Context units keep
internal memory of
past inputs
Fixed context weights
Backpropagation for
learning
E.g. Can disambiguate
A B C and
C B A

Elman network

47R. Rao, 528: Lecture 13

Demos (by Keith Grochow, CSE 599, 2001)

Neural network learns to balance a pole on a cart
System:

4 state variables: xcart, vcart, θpole, vpole
1 input: Force on cart

Backprop Network:
Input: State variables
Output: New force on cart

NN learns to back a truck into a loading dock
System (Nyugen and Widrow, 1989):

State variables: xcab, ycab, θcab
1 input: new θsteering

Backprop Network:
Input: State variables
Output: Steering angle θsteering

xcart

vcart

vpole

θpole

48R. Rao, 528: Lecture 13

Next Class: Guest lecture by Mike Shadlen

Things to do:
Read Chapter 9
Finish Last Homework (due Wed, June 3)
Work on mini-project

I’ll be bäck
(for reinf. learning)

	CSE/NB 528�Lecture 13: Supervised Learning�(Chapter 8)
	What’s on the menu today?
	The Classification Problem
	Supervised Learning
	Classification using “Perceptrons”
	Perceptrons use “Threshold Units”
	What does a Perceptron compute?
	Linear Separability
	Perceptron Learning Rule
	What about the XOR function?
	Linear Inseparability
	How do we deal with linear inseparability?
	Solution in 1980s: Multilayer perceptrons
	What if you want to approximate a continuous function?
	Example Network
	Function Approximation
	Radial Basis Function (RBF) Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	RBF networks
	RBF Networks versus Multilayer Perceptrons
	Another Model: Sigmoidal Networks
	Gradient-Descent Learning (“Hill-Climbing”)
	Gradient-Descent Learning (“Hill-Climbing”)
	“Stochastic” Gradient Descent
	But wait….
	Enter…the backpropagation algorithm
	Backpropagation: Uppermost layer (delta rule)
	Backpropagation: Inner layer (chain rule)
	Example: Learning to Drive
	Example Network
	Example Network
	Training the network using backprop
	Another Example: Face Detection
	Face Detection by a Neural Network
	Recurrent Supervised Networks
	Partially Recurrent Networks
	Next Class: Guest lecture by Mike Shadlen

