CSE/NB 528
Lecture 13: Supervised Learning
(Chapter 8)

Lecture figures are from Dayan & Abbott’s book
What’s on the menu today?

- Supervised Learning
 - Why supervised learning?
 - Classification
 - Function Approximation
 - Perceptrons & Learning Rule
 - Linear Separability: Minsky-Papert deliver the bad news
 - Multilayer networks to the rescue
 - Function Approximation
 - Radial Basis Function Networks
 - Sigmoid Networks
 - Backpropagating (errors)
Example: Face Detection

How do we build a classifier to distinguish between faces and other objects?
The Classification Problem

- denotes +1 (faces)
- denotes -1 (other)

Idea: Find a separating hyperplane (line in this case)
Supervised Learning

- Two Primary Tasks
 1. **Classification**
 - Inputs \(u_1, u_2, \ldots \) and discrete classes \(C_1, C_2, \ldots, C_k \)
 - Training examples: \((u_1, C_2), (u_2, C_7), \) etc.
 - Learn the mapping from an arbitrary input to its class
 - Example: Inputs = images, output classes = face, not a face

 2. **Function Approximation (regression)**
 - Inputs \(u_1, u_2, \ldots \) and continuous outputs \(v_1, v_2, \ldots \)
 - Training examples: (input, desired output) pairs
 - Learn to map an arbitrary input to its corresponding output
 - Example: Highway driving
 - Input = road image, output = steering angle
Classification using “Perceptrons”

- Fancy name for a type of layered feedforward networks
- Uses artificial neurons (“units”) with binary inputs and outputs
Perceptrons use “Threshold Units”

- Artificial neuron:
 - m binary inputs (-1 or 1) and 1 output (-1 or 1)
 - Synaptic weights w_{ij}
 - Threshold μ_i

\[v_i = \Theta(\sum_j w_{ij} u_j - \mu_i) \]

\(\Theta(x) = 1 \text{ if } x \geq 0 \text{ and } -1 \text{ if } x < 0 \)
What does a Perceptron compute?

Consider a single-layer perceptron

- Weighted sum forms a *linear hyperplane*
 \[\sum_{j} w_{ij} u_j - \mu_i = 0 \]

- Everything *on one side* of hyperplane is in class 1 (output = +1) and everything *on other side* is class 2 (output = -1)

- Any function that is linearly separable can be computed by a perceptron
Linear Separability

- Example: **AND** is linearly separable
 \[a \text{ AND } b = 1 \text{ if and only if } a = 1 \text{ and } b = 1 \]

Perceptron for AND
Perceptron Learning Rule

Given inputs \(u \) and desired output \(v^d \), adjust \(w \) as follows:

1. Compute error signal \(e = (v^d - v) \) where \(v \) is the current output

2. Change weights according to the error \(e \)
 - For positive inputs, increase weights if error is positive and decrease if error is negative (opposite for negative inputs)

\[
\mathbf{w} \rightarrow \mathbf{w} + \varepsilon (v^d - v) \mathbf{u}
\]

\(A \rightarrow B \) means replace \(A \) with \(B \)
What about the XOR function?

Can a straight line separate the +1 outputs from the -1 outputs?
Linear Inseparability

- Single-layer perceptron with threshold units fails if classification task is not linearly separable
 - Example: XOR
 - No single line can separate the “yes” (+1) outputs from the “no” (−1) outputs!

- Minsky and Papert’s book showing such negative results put a damper on neural networks research for over a decade!
How do we deal with linear inseparability?
Solution in 1980s: Multilayer perceptrons

- Removes limitations of single-layer networks
 - Can solve XOR

- An example of a two-layer perceptron that computes XOR

Output is +1 if and only if \(x + y - 2\Theta(x + y - 1.5) - 0.5 > 0 \)

(Here, inputs x, y are assumed to be 0 or 1)
Multilayer Perceptron: What does it do?
Example: Perceptrons as Constraint Satisfaction Networks

\[y = 1 + \frac{1}{2}x \]

\[1 + \frac{1}{2}x - y < 0 \]

\[1 + \frac{1}{2}x - y > 0 \]
Example: Perceptrons as Constraint Satisfaction Networks

\[2 - x - y > 0 \]

\[2 - x - y < 0 \]
Example: Perceptrons as Constraint Satisfaction Networks

R. Rao, 528: Lecture 13
Perceptrons as Constraint Satisfaction Networks

\[1 + \frac{1}{2}x - y > 0 \]

\[2 - x - y < 0 \]
What if you want to approximate a continuous function?

Can a network learn to drive?
Example Network

Steering angle

Desired Output: \(\mathbf{d} = (d_1, d_2, \ldots, d_{30}) \)

Current image

Input \(\mathbf{u} = (u_1, u_2, \ldots, u_{960}) = \text{image pixels} \)
Function Approximation

- We want networks that can learn a function
 - Network maps real-valued inputs to real-valued outputs
 - Want to generalize to predict outputs for new inputs
 - Idea: Given input data, map input to desired output by adapting weights
Radial Basis Function (RBF) Networks

output neurons

one layer of hidden neurons

input nodes
Radial Basis Function Networks

"activation" function:

\[a_j = \sqrt{\sum_{i=1}^{n} (x_i - \mu_{i,j})^2} \]
Radial Basis Function Networks

Hidden layer: (Gaussian bell-shaped function)

\[h(a) = e^{-\frac{a^2}{2\sigma^2}} \]
Radial Basis Function Networks

Main Idea: Use a mixture of Gaussian functions of the input to approximate the output.

Gaussians are called “basis functions”.

Output of network:

\[\text{out}_j = \sum_i w_{i,j} h_i \]
RBF networks

- Radial basis functions
 - Hidden units store means and variances
 - Hidden units compute a Gaussian function of inputs \(x_1, \ldots, x_n \)
- Learn weights \(w_i \), means \(\mu_i \), and variances \(\sigma_i \) by minimizing squared error function (gradient descent learning)

\[
h_i = \exp\left[-\frac{(x - u_i)^T(x - u_i)}{2\sigma^2}\right], \quad y = \sum_i h_i w_i
\]
RBF Networks versus Multilayer Perceptrons

output neurons

input nodes

RBF:

MLP:
Another Model: Sigmoidal Networks

Output

\[
v = g(w^T u) = g\left(\sum_i w_i u_i\right)
\]

Input nodes

\[
u = (u_1, u_2, u_3)^T
\]

Sigmoid function:

\[
g(a) = \frac{1}{1 + e^{-\beta a}}
\]

Sigmoid is a non-linear “squashing” function: Squashes input to be between 0 and 1. The parameter \(\beta\) controls the slope.
Gradient-Descent Learning ("Hill-Climbing")

- Given training examples \((u^m, d^m)\) (m = 1, ..., N), define a *sum of squared output errors function* (also called a cost function or "energy" function)

\[
E(w) = \frac{1}{2} \sum_m (d^m - v^m)^2
\]

where \(v^m = g(w^T u^m)\)
Gradient-Descent Learning (“Hill-Climbing”)

- Would like to change \(\mathbf{w} \) so that \(E(\mathbf{w}) \) is minimized
 - Gradient Descent: Change \(\mathbf{w} \) in proportion to \(-dE/d\mathbf{w}\) (why?)

\[
\mathbf{w} \rightarrow \mathbf{w} - \varepsilon \frac{dE}{d\mathbf{w}}
\]

\[
\frac{dE}{d\mathbf{w}} = -\sum_m (d^m - v^m) \frac{dv^m}{d\mathbf{w}} = -\sum_m (d^m - v^m) g'(\mathbf{w}^T \mathbf{u}^m) \mathbf{u}^m
\]

Derivative of sigmoid
“Stochastic” Gradient Descent

- What if the inputs only arrive one-by-one?
- Stochastic gradient descent approximates sum over all inputs with an “on-line” running sum:

\[w \rightarrow w - \varepsilon \frac{dE_1}{dw} \]

\[\frac{dE_1}{dw} = -(d^m - v^m)g'(w^T u^m)u^m \]

Also known as the “delta rule” or “LMS (least mean square) rule”

Delta = error
But wait….

What if we have multiple layers?

Output $v = (v_1, v_2, \ldots, v_J)^T$; Desired = d

Delta rule can be used to adapt these weights

How do we adapt these?

Input $u = (u_1, u_2, \ldots, u_K)^T$
Enter…the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)
Backpropagation: Uppermost layer (delta rule)

\[E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2 \]

Learning rule for hidden-output weights \(W \):

\[
W_{ji} \rightarrow W_{ji} - \varepsilon \frac{dE}{dW_{ji}} \quad \text{\{gradient descent\}}
\]

\[
\frac{dE}{dW_{ji}} = -(d_i - v_i)g'\left(\sum_j W_{ji}x_j\right)x_j \quad \text{\{delta rule\}}
\]
Backpropagation: Inner layer (chain rule)

\[E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2 \]

\[v_i^m = g(\sum_j W_{ji}x_j) \]

\[x_j^m = g(\sum_k w_{kj}u_k^m) \]

Learning rule for input-hidden weights \(w \):

\[w_{kj} \rightarrow w_{kj} - \varepsilon \frac{dE}{dw_{kj}} \quad \text{But:} \quad \frac{dE}{dw_{kj}} = \frac{dE}{dx_j} \cdot \frac{dx_j}{dw_{kj}} \quad \{\text{chain rule}\} \]

\[\frac{dE}{dw_{kj}} = \left[-\sum_{m,i} (d_i^m - v_i^m)g'(\sum_j W_{ji}x_j^m)W_{ji} \right] \cdot \left[g'(\sum_k w_{kj}u_k^m)u_k^m \right] \]
Example: Learning to Drive
Example Network

(Pomerleau, 1992)
Example Network

Get steering angle

Training Output:
\[\mathbf{d} = (d_1, d_2, \ldots, d_{30}) \]

Get current camera image

Training Input
\[\mathbf{u} = (u_1, u_2, \ldots, u_{960}) = \text{image pixels} \]
Training the network using backprop

\[v_i = g(\sum_j W_{ji} g(\sum_k w_{kj} u_k)) \]

Start with random weights \(W, w \)

Given input \(u \), network produces output \(v \)

Use backprop to learn \(W \) and \(w \) that minimize total error over all output units (labeled \(i \)):

\[E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2 \]
Learning to Drive using Backprop

One of the learned “road features” w_i
ALVINN (Autonomous Land Vehicle in a Neural Network)

Trained using human driver + camera images
After learning:
Drove up to 70 mph on highway
Up to 22 miles without intervention
Drove cross-country largely autonomously

(Pomerleau, 1992)
Another Example: Face Detection

Output between -1 (no face) and +1 (face present)

(Rowley, Baluja & Kanade, 1998)
Face Detection by a Neural Network

(Rowley, Baluja & Kanade, 1998)
Recurrent Supervised Networks

Why use recurrent networks?
- To keep track of recent history and context
- Can learn temporal patterns (time series or oscillations)

Examples
- Recurrent backpropagation networks: for small sequences, *unfold network in time dimension* to get multi-layered network and use backpropagation learning
- Partially recurrent networks E.g. Elman net
Partially Recurrent Networks

- Example
 - Elman net
 - Partially recurrent
 - Context units keep *internal memory of past inputs*
 - Fixed context weights
 - Backpropagation for learning
 - E.g. Can disambiguate $A \rightarrow B \rightarrow C$ and $C \rightarrow B \rightarrow A$

Elman network
Demos (by Keith Grochow, CSE 599, 2001)

- Neural network learns to balance a pole on a cart
 - System:
 - 4 state variables: x_{cart}, v_{cart}, θ_{pole}, v_{pole}
 - 1 input: Force on cart
 - Backprop Network:
 - Input: State variables
 - Output: New force on cart

- NN learns to back a truck into a loading dock
 - System (Nyugen and Widrow, 1989):
 - State variables: x_{cab}, y_{cab}, θ_{cab}
 - 1 input: new $\theta_{steering}$
 - Backprop Network:
 - Input: State variables
 - Output: Steering angle $\theta_{steering}$
Next Class: Guest lecture by Mike Shadlen

Things to do:
- Read Chapter 9
- Finish Last Homework (due Wed, June 3)
- Work on mini-project

I’ll be bäck
(for reinf. learning)