CSE/NB 528 Lecture 13: Supervised Learning (Chapter 8)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg Lecture figures are from Dayan & Abbott's book http://people.brandeis.edu/~abbott/book/index.html

What's on the menu today?

- Supervised Learning
 - ⇔ Why supervised learning?
 - Classification
 - Function Approximation
 - ⇒ Perceptrons & Learning Rule
 - Linear Separability: Minsky-Papert deliver the bad news
 - ⇔ Multilayer networks to the rescue
 - Function Approximation
 - Radial Basis Function Networks
 - Sigmoid Networks
 - Backpropagating (errors)

"Oh, brother! ... Not hamsters again!"

Example: Face Detection

How do we build a classifier to distinguish between faces and other objects?

The Classification Problem

denotes +1 (faces)

denotes -1 (other)

Idea: Find a separating hyperplane (line in this case)

Supervised Learning

Two Primary Tasks

- **1. Classification**
 - Inputs u_1, u_2, \dots and discrete classes C_1, C_2, \dots, C_k
 - Training examples: $(u_1, C_2), (u_2, C_7)$, etc.
 - Learn the mapping from an arbitrary input to its class
 - Example: Inputs = images, output classes = face, not a face

2. Function Approximation (regression)

- Inputs u_1, u_2, \ldots and continuous outputs v_1, v_2, \ldots
- Training examples: (input, desired output) pairs
- Learn to map an arbitrary input to its corresponding output
- Example: Highway driving
 Input = road image, output = steering angle

Classification using "Perceptrons"

- ✦ Fancy name for a type of layered feedforward networks
- Uses artificial neurons ("units") with binary inputs and outputs

Single-layer

Multilayer

Perceptrons use "Threshold Units"

- Artificial neuron:
 - \Rightarrow m binary inputs (-1 or 1) and 1 output (-1 or 1)
 - \Rightarrow Synaptic weights w_{ij}
 - \Rightarrow Threshold μ_i

$$v_i = \Theta(\sum_j w_{ij}u_j - \mu_i)$$

$$\Theta(\mathbf{x}) = 1 \text{ if } \mathbf{x} \ge 0 \text{ and } -1 \text{ if } \mathbf{x} < 0$$

Inputs u_{j} (-1 or +1) w_{i2} Σ (-1 or +1) w_{i3} (-1 or +1) What does a Perceptron compute?

Consider a single-layer perceptron

Solution Weighted sum forms a *linear hyperplane*

$$\sum_{j} w_{ij} u_{j} - \mu_{i} = 0$$

Everything on one side of hyperplane is in class 1 (output = +1) and everything on other side is class 2 (output = -1)

Any function that is linearly separable can be computed by <u>a perceptron</u> Linear Separability

◆ Example: AND is linearly separable
⇒ a AND b = 1 if and only if a = 1 and b = 1

Perceptron for AND

Perceptron Learning Rule

✦ Given inputs u and desired output v^d, adjust w as follows:

- 1. Compute error signal $e = (v^d v)$ where v is the current output
- Change weights according to the error e
 ⇒ For positive inputs, increase weights if error is positive and decrease if error is negative (opposite for negative inputs)

$$\mathbf{W} \rightarrow \mathbf{W} + \mathcal{E}(v^d - v)\mathbf{U}$$
 $A \rightarrow B$ means replace A with B

What about the XOR function?

Can a straight line separate the +1 outputs from the -1 outputs?

Linear Inseparability

 Single-layer perceptron with threshold units fails if classification task is not linearly separable

- \Rightarrow Example: XOR
- ◇ No single line can separate the "yes" (+1) outputs from the "no" (-1) outputs!
- Minsky and Papert's book showing such negative results put a damper on neural networks research for over a decade!

How do we deal with linear inseparability?

Solution in 1980s: Multilayer perceptrons

Removes limitations of single-layer networks Can solve XOR

An example of a two-layer perceptron that computes XOR

• Output is +1 if and only if $x + y - 2\Theta(x + y - 1.5) - 0.5 > 0$ R. Rao, 528: Lecture 13 (Here, inputs x, y are assumed to be 0 or 1) 14

Multilayer Perceptron: What does it do?

Example: Perceptrons as Constraint Satisfaction Networks

Example: Perceptrons as Constraint Satisfaction Networks

Example: Perceptrons as Constraint Satisfaction Networks

Perceptrons as Constraint Satisfaction Networks

What if you want to approximate a continuous function?

Can a network learn to drive?

Example Network

Left Steering angle

Sharp

Desired Output:

 $\mathbf{d} = (d_1 \ d_2 \ \dots \ d_{30})$

Current image

Input $\mathbf{u} = (u_1 \ u_2 \ \dots \ u_{960}) = \text{image pixels}$

Straight

Ahead

Sharp

Right

4 Hidden Units

30 Output Units

30x32 Sensor **Input Retina**

Function Approximation

♦ We want networks that can <u>learn a function</u>
 ⇒ Network maps real-valued inputs to real-valued outputs
 ⇒ Want to generalize to predict outputs for new inputs
 ⇒ <u>Idea</u>: Given input data, map input to desired output by *adapting weights*

Input

Radial Basis Function (RBF) Networks

output neurons

input nodes

Radial Basis Function Networks

input nodes

Radial Basis Function Networks

Radial Basis Function Networks

output neurons

input nodes

R. Rao, 528: Lecture 13

output of network: out_j = $\sum_{i} w_{i,j} h_i$

- Main Idea: Use a mixture of Gaussian functions of the input to approximate the output
- Gaussians are called "basis functions"

RBF networks

- Radial basis functions
 - Hidden units store means and variances
 - Hidden units compute a Gaussian function of inputs

 $x_1, \dots x_n$

 Learn weights w_i, means μ_i, and variances σ_i by minimizing squared error function (gradient descent learning)

$$h_i = exp[-rac{(\mathbf{x}-\mathbf{u}_i)^{\mathbf{T}}(\mathbf{x}-\mathbf{u}_i)}{2\sigma^2}], \ y = \sum_i h_i w_i$$

RBF Networks versus Multilayer Perceptrons

output neurons

input nodes

Another Model: Sigmoidal Networks

Sigmoid is a non-linear "squashing" function: Squashes input to be between 0 and 1. The parameter β controls the slope.

Gradient-Descent Learning ("Hill-Climbing")

Given training examples (u^m,d^m) (m = 1, ..., N), define a sum of squared output errors function (also called a cost function or "energy" function)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{m} (d^m - v^m)^2$$

where
$$v^m = g(\mathbf{w}^T \mathbf{u}^m)$$

Gradient-Descent Learning ("Hill-Climbing")

♦ Would like to change w so that E(w) is minimized
 ⇒ Gradient Descent: Change w in proportion to -dE/dw (why?)

$$\mathbf{w} \to \mathbf{w} - \varepsilon \frac{dE}{d\mathbf{w}}$$

$$\frac{dE}{d\mathbf{w}} = -\sum_{m} (d^{m} - v^{m}) \frac{dv^{m}}{d\mathbf{w}} = -\sum_{m} (d^{m} - v^{m}) g'(\mathbf{w}^{T} \mathbf{u}^{m}) \mathbf{u}^{m}$$

$$f$$
Derivative of sigmoid

"Stochastic" Gradient Descent

- What if the inputs only arrive one-by-one?
- Stochastic gradient descent approximates sum over all inputs with an "on-line" running sum:

$$\mathbf{w} \to \mathbf{w} - \varepsilon \frac{dE_1}{d\mathbf{w}}$$

$$\frac{dE_1}{d\mathbf{w}} = -(d^m - v^m)g'(\mathbf{w}^T\mathbf{u}^m)\mathbf{u}^m$$

delta = error

Also known as the "delta rule" or "LMS (least mean square) rule"

But wait....

♦ What if we have multiple layers?

Enter...the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)

Backpropagation: Uppermost layer (delta rule)

Learning rule for <u>hidden-output weights W</u>:

$$W_{ji} \rightarrow W_{ji} - \varepsilon \frac{dE}{dW_{ji}}$$
 {g

{gradient descent}

$$\frac{dE}{dW_{ji}} = -(d_i - v_i)g'(\sum_j W_{ji}x_j)x_j \qquad \{\text{delta rule}\}$$

Backpropagation: Inner layer (chain rule)

m,i

$$E(\mathbf{W}, \mathbf{w}) = \frac{1}{2} \sum_{i} (d_{i} - v_{i})^{2}$$

$$W$$

$$W$$

$$W$$

$$W$$

$$x_{j}^{m} = g(\sum_{k} w_{kj} u_{k}^{m})$$

$$W$$

$$W$$

$$u_{k}^{m}$$
Learning rule for input-hidden weights w:
$$w_{kj} \rightarrow w_{kj} - \varepsilon \frac{dE}{dw_{kj}}$$
But : $\frac{dE}{dw_{kj}} = \frac{dE}{dx_{j}} \cdot \frac{dx_{j}}{dw_{kj}}$ {chain rule}
$$\frac{dE}{dw_{kj}} = \left[-\sum_{m,i} (d_{i}^{m} - v_{i}^{m})g'(\sum_{j} W_{ji} x_{j}^{m})W_{ji} \right] \cdot \left[g'(\sum_{k} w_{kj} u_{k}^{m})u_{k}^{m} \right]$$

36

Example: Learning to Drive

Example Network

Example Network

Training Input $\mathbf{u} = (u_1 \ u_2 \ \dots \ u_{960}) = \text{image pixels}$

Training the network using backprop

Start with random weights **W**, **w** Given input **u**, network produces output **v**

Use backprop to learn W and w that minimize total error over all output units (labeled *i*):

$$E(\mathbf{W},\mathbf{w}) = \frac{1}{2} \sum_{i} (d_i - v_i)^2$$

Learning to Drive using Backprop

ALVINN (Autonomous Land Vehicle in a Neural Network)

CMU Navlab

Trained using human driver + camera images After learning: Drove up to 70 mph on highway Up to 22 miles without intervention Drove cross-country largely autonomously

(Pomerleau, 1992)

Another Example: Face Detection

Output between -1 (no face) and +1 (face present)

(Rowley, Baluja & Kanade, 1998)

Face Detection by a Neural Network

(Rowley, Baluja & Kanade, 1998)

Recurrent Supervised Networks

Why use recurrent networks?
 To keep track of recent history and context
 Can learn temporal patterns (time series or oscillations)

- ✦ Examples
 - Recurrent backpropagation networks: for small sequences, *unfold network in time dimension* to get multi-layered network and use backpropagation learning
 Partially recurrent networks E.g. Elman net

Partially Recurrent Networks

- ✦ Example
 - ➡ Elman net
 - Partially recurrent
 - Context units keep internal memory of past inputs
 - *Fixed* context weights
 - Backpropagation for learning
 - E.g. Can disambiguate $A \rightarrow B \rightarrow C$ and $C \rightarrow B \rightarrow A$

Elman network

Demos (by Keith Grochow, CSE 599, 2001)

Neural network learns to balance a pole on a cart

V_{pole} ⇔ System: \Rightarrow 4 state variables: x_{cart} , v_{cart} , θ_{pole} , v_{pole} X_{cart} \Rightarrow 1 input: Force on cart θ_{pole} ⇒ Backprop Network: V_{cart} ⇒ Input: State variables ⇔ Output: New force on cart ♦ NN learns to back a truck into a loading dock System (Nyugen and Widrow, 1989): \Rightarrow State variables: x_{cab} , y_{cab} , θ_{cab} \Rightarrow 1 input: new θ_{steering} initial state ⇒ Backprop Network: ⇒ Input: State variables time-lapse \Rightarrow Output: Steering angle θ_{steering} R. Rao, 528: Lecture 13

final state

Next Class: Guest lecture by Mike Shadlen

- Things to do:
 - ⇔ Read Chapter 9
 - ⇔ Finish Last Homework (due Wed, June 3)
 - ⇔ Work on mini-project

