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CSE/NB 528
Lecture 13: Supervised Learning

(Chapter 8)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html



2R. Rao, 528: Lecture 13

What’s on the menu today?

Supervised Learning
Why supervised learning? 

Classification
Function Approximation

Perceptrons & Learning Rule
Linear Separability: Minsky-Papert deliver the bad news
Multilayer networks to the rescue
Function Approximation
Radial Basis Function Networks
Sigmoid Networks
Backpropagating (errors)

(Copyright, Gary Larson)
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Example: Face Detection

How do we build a classifier to distinguish 
between faces and other objects?
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The Classification Problem
denotes +1 (faces)

denotes -1 (other)Faces

Other objects

Idea: Find a separating hyperplane (line in this case)
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Supervised Learning

Two Primary Tasks
1. Classification

Inputs u1, u2, … and discrete classes C1, C2, …, Ck
Training examples: (u1, C2), (u2, C7), etc.
Learn the mapping from an arbitrary input to its class
Example: Inputs = images, output classes = face, not a face

2. Function Approximation (regression)
Inputs u1, u2, … and continuous outputs v1, v2, …
Training examples: (input, desired output) pairs
Learn to map an arbitrary input to its corresponding output
Example: Highway driving
Input = road image, output = steering angle
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Classification using “Perceptrons”

Fancy name for a type of layered feedforward networks

Uses artificial neurons (“units”) with binary inputs and 
outputs

Multilayer
Single-layer
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Perceptrons use “Threshold Units”

Artificial neuron:
m binary inputs (-1 or 1) and 1 output (-1 or 1)
Synaptic weights wij
Threshold μi

Inputs uj
(-1 or +1)

Output vi
(-1 or +1)

Weighted Sum Threshold

Θ(x) = 1 if x ≥ 0 and -1 if x < 0

)( ij
j

iji uwv μ−Θ= ∑



8R. Rao, 528: Lecture 13

What does a Perceptron compute?

Consider a single-layer perceptron
Weighted sum forms a linear hyperplane

Everything on one side of hyperplane is in class 1 (output = 
+1) and everything on other side is class 2 (output = -1)
Any function that is linearly separable can be computed by 
a perceptron

0=−∑ ij
j

ijuw μ
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Linear Separability

Example: AND is linearly separable
a AND b = 1 if and only if a = 1 and b = 1

Linear hyperplane
v

u1 u2

μ = 1.5
(1,1)

1

1

-1

-1

u1

u2

Perceptron for AND
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Perceptron Learning Rule

Given inputs u and desired output vd, adjust w as follows:

1. Compute error signal e = (vd – v) where v is the current output

2. Change weights according to the error e
⇒ For positive inputs, increase weights if error is positive and 

decrease if error is negative (opposite for negative inputs)

uww )( vvd −+→ ε BABA  with  replace means  →
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What about the XOR function?

1
1

-1

-1

u1

u2
-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR ?

Can a straight line separate the +1 
outputs from the -1 outputs?
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Linear Inseparability

Single-layer perceptron with threshold units fails if 
classification task is not linearly separable

Example: XOR
No single line can separate the “yes” (+1)
outputs from the “no” (-1) outputs!

Minsky and Papert’s book 
showing such negative results put 
a damper on neural networks 
research for over a decade!

(1,1)

1
1

-1

-1

u1

u2

X
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How do we deal with linear inseparability?
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Solution in 1980s: Multilayer perceptrons

Removes limitations of single-layer networks
Can solve XOR

An example of a two-layer perceptron that computes XOR

Output is +1 if and only if x + y – 2Θ(x + y – 1.5) – 0.5 > 0
x y

(Here, inputs x, y are assumed to be 0 or 1)
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Multilayer Perceptron: What does it do?
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Example: Perceptrons as Constraint Satisfaction Networks
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Example: Perceptrons as Constraint Satisfaction Networks



18R. Rao, 528: Lecture 13
x y

out

x

y

1

1

2

1 2

=-1

=-1=1

=1
1−1

2
1

− -
2
1

− >0

Example: Perceptrons as Constraint Satisfaction Networks
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Perceptrons as Constraint Satisfaction Networks
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What if you want to approximate a 
continuous function?

Can a network learn to drive?
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Example Network

Input u = (u1  u2 … u960)  = image pixels

Steering angle

Current image

Desired Output:
d = (d1  d2 … d30)
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Function Approximation

We want networks that can learn a function
Network maps real-valued inputs to real-valued outputs
Want to generalize to predict outputs for new inputs
Idea: Given input data, map input to desired output by 
adapting weights
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Radial Basis Function (RBF) Networks

input nodes

output neurons

one layer of
hidden neurons
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Radial Basis Function Networks

“activation” function:

∑
=

−=
n

i
jiij xa

1

2
, )( μ

input nodes

output neurons
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Radial Basis Function Networks

2

2

2)( σ
a

eah
−

=

Hidden layer:
(Gaussian bell-shaped function)

a

Ψ(a)

input nodes

output neurons

h(a)
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Radial Basis Function Networks

output of network:

∑=
i

ijij hw ,out

input nodes

output neurons

• Main Idea: Use a mixture of Gaussian 
functions of the input to approximate 
the output

• Gaussians are called “basis functions”
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RBF networks

Radial basis functions
Hidden units store means and 
variances
Hidden units compute a 
Gaussian function of inputs 
x1,…xn

Learn weights wi, means μi, 
and variances σi by 
minimizing squared error 
function (gradient descent 
learning)

y
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RBF Networks versus Multilayer Perceptrons

RBF: MLP:

input nodes

output neurons
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Input nodes
ae

ag β−+
=

1
1)(

a

Ψ(a)
1

Sigmoid function:

Sigmoid is a non-linear “squashing” function: Squashes input to 
be between 0 and 1. The parameter β controls the slope.

g(a)

)()( i
i

i
T uwggv ∑== uw

w

u = (u1 u2 u3)T

Output

Another Model: Sigmoidal Networks
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Gradient-Descent Learning (“Hill-Climbing”)

Given training examples (um,dm) (m = 1, …, N), define a 
sum of squared output errors function (also called a cost 
function or “energy” function)

2)(
2
1)( m

m

m vdE −= ∑w

)( mTm gv uw=where
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Would like to change w so that E(w) is minimized
Gradient Descent: Change w in proportion to –dE/dw
(why?)

mmTmm

m

m
mm

m
gvd

d
dvvd

d
dE

d
dE

uuw
ww

w
ww

)()()( ′−−=−−=

−→
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ε

Derivative of sigmoid

Gradient-Descent Learning (“Hill-Climbing”)
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“Stochastic” Gradient Descent

What if the inputs only arrive one-by-one?

Stochastic gradient descent approximates sum over all 
inputs with an “on-line” running sum:

mmTmm gvd
d
dE

d
dE

uuw
w

w
ww

)()(1

1

′−−=

−→ ε
Also known as 
the “delta rule”
or “LMS (least 
mean square) 

rule”
delta = error
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But wait….

What if we have multiple layers?

Delta rule can be used to 
adapt these weights

How do we adapt these?

Input u = (u1  u2 … uK)T

Output v = (v1  v2 … vJ)T; Desired = d
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Enter…the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)
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Backpropagation: Uppermost layer (delta rule)

j
j

jjiii
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{delta rule}

)( j
j

jii xWgv ∑=

ku
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Learning rule for hidden-output weights W:

2)(
2
1),( i

i
i vdE −= ∑wW

{gradient descent}
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Backpropagation: Inner layer (chain rule)
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Example: Learning to Drive
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Example Network

(Pomerleau, 1992)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf
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Example Network

Training Input u = (u1  u2 … u960)  = image pixels

Get steering angle

Get current 
camera image

Training Output:
d = (d1  d2 … d30)
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Training the network using backprop

2)(
2
1),( i

i
i vdE −= ∑wW

Start with random weights W, w

Given input u, network produces   
output v

Use backprop to learn W and w
that minimize total error over all 
output units (labeled i): 

))(( k
k

kj
j

jii uwgWgv ∑∑=

ku
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Learning to Drive using Backprop

One of the learned 
“road features” wi
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ALVINN (Autonomous Land Vehicle in a Neural Network)

(Pomerleau, 1992)

Trained using human 
driver + camera images

After learning:
Drove up to 70 mph on 
highway
Up to 22 miles without 
intervention
Drove cross-country 
largely autonomously

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf
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Another Example: Face Detection

(Rowley, Baluja & Kanade, 1998)

Output between -1 (no face) and +1 (face present)

http://vasc.ri.cmu.edu/NNFaceDetector/
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Face Detection by a Neural Network

(Rowley, Baluja & Kanade, 1998)

http://vasc.ri.cmu.edu/NNFaceDetector/


45R. Rao, 528: Lecture 13

Recurrent Supervised Networks

Why use recurrent networks?
To keep track of recent history and context
Can learn temporal patterns (time series or oscillations)

Examples
Recurrent backpropagation networks: for small 
sequences, unfold network in time dimension to get multi-
layered network and use backpropagation learning
Partially recurrent networks E.g. Elman net
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Partially Recurrent Networks

Example
Elman net

Partially recurrent
Context units keep 
internal memory of 
past inputs
Fixed context weights
Backpropagation for 
learning
E.g. Can disambiguate 
A B C and 
C B A

Elman network
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Demos (by Keith Grochow, CSE 599, 2001)

Neural network learns to balance a pole on a cart
System:

4 state variables: xcart, vcart, θpole, vpole
1 input: Force on cart

Backprop Network:
Input: State variables
Output: New force on cart

NN learns to back a truck into a loading dock
System (Nyugen and Widrow, 1989):

State variables: xcab, ycab, θcab
1 input: new θsteering

Backprop Network:
Input: State variables
Output: Steering angle θsteering

xcart

vcart

vpole

θpole
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Next Class: Guest lecture by Mike Shadlen

Things to do:
Read Chapter 9
Finish Last Homework (due Wed, June 3)
Work on mini-project

I’ll be bäck
(for reinf. learning)
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