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CSE/NEUBEH 528
Lecture 12: Unsupervised Learning

(Chapters 8 & 10)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html
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Gameplan for Today

Unsupervised (Representational) Learning
Temporally asymmetric learning
Hebb rule and Principal Component Analysis (PCA)
Causal Models
Generative versus Recognition Models
Density Estimation and EM
Sparse Coding
Independent Component Analysis (ICA)
Predictive Coding

(Copyright, Warner Brothers)
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Flashback: Hebb Rule

“If neuron A frequently contributes to the firing of neuron B, 
then the synapse from A to B should be strengthened”

Consider a linear neuron:

Basic Hebb Rule: 
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Waittaminute…what did Hebb really say?

If neuron A frequently contributes to the firing of 
neuron B, then the synapse from A to B should be 

strengthened

Causality (order of input/output) is important, 
not just correlation
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Evidence for Causal Learning Rules: Spike-Timing 
Dependent Synaptic Plasticity (STDP)

(Note: This is just a simulation I did a while back, not real data!)

Input before Output Spike Input after Output Spike
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STDP in the Vertebrate Brain

Cortical Slice Tadpole tectum

LTP

LTD

LTP

LTD

(This is real data!)
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Temporally Asymmetric Hebb Rule (STDP)
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Past inputs Past outputs

LTP LTD
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What does STDP do in a Recurrent Network?

Direction of input sequence
(u1 u2 …)

Adapt M 
using STDP, 
keep W fixed
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STDP allows prediction in the navigating rat

Tuning curve before and after

Tuning curve shifts, 
generating anticipatory response

Rat’s direction 
of motion

Shift in place field 
location in rat 
hippocampus
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Back to traditional Hebb rule:

What does this do?

(Flashback from last time:

Eigenvector analysis shows that…)

v
dt
d

w uw
=τ
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Hebb Rule implements PCA!

Pure Hebb Pure Hebb Covariance Rule
Input mean = (0,0) Input mean = (2,2)        Input mean = (2,2)

Hebb rule rotates weight vector to align with principal 
eigenvector of input correlation/covariance matrix (i.e. 

direction of maximum variance)

Weight 
vector w 

after 
learning
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What about this data?

?
What does the 

covariance rule learn?

Initial w
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PCA does not correctly describe the data

Input data is made up of two clusters (Gaussians) two “causes”
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Causal Models

Main goal of unsupervised 
learning: Learn the “Causes”
underlying the input data

Example: Learn the means and 
variances of the two Gaussians A 
and B that generated this data

Want: Two neurons A and B that 
learn the means and variances 
based solely on input data (samples 
from distribution)

meanA

2σA
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Generative versus Recognition Models

];|[ Gp vu

];|[ Gp uvCauses  v

Data u

Generative 
model

Recognition 
model

];[];|[];[ GpGpGp vvuu
v
∑=

Prior
= γv

(likelihood)

(μv, σv)(posterior)

Parameters G = (μv, σv, γv)

(similar to 
decoding vs. 
encoding)
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How do we learn the parameters (e.g., mean)?

Idea: Each neuron represents one cluster
Minimize sum squared distance of each point to closest cluster center



17R. Rao, 528: Lecture 12

Break it down into 2 subproblems

Suppose you are given the cluster 
centers ci
Q:  how do you assign points to 

a cluster?

A:   for each point p, choose 
closest ci

Suppose you are given the points in 
each cluster
Q:  how to re-compute each 

cluster’s center?
A:  choose ci to be the mean of 

all the points in that cluster
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Randomly initialize the cluster centers (synaptic weights)

“K-means” clustering: Example
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Determine cluster membership for each input 
(“winner-takes-all” inhibitory circuit)

“K-means” clustering: Example
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Re-estimate cluster centers (adapt synaptic weights)

“K-means” clustering: Example
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Result of first iteration
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“K-means” clustering: Example
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Second iteration
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“K-means” clustering: Example
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Result of second iteration

“K-means” clustering: Example
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K-means clustering

Properties
Will always converge to some solution
Can be a “local minimum”
• does not always find the global minimum of 

objective function:
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K-means and probability density estimation

Can formalize K-means as probability density estimation

Model data as a mixture of K Gaussians:

Estimate not only means but also covariances

];[];|[];[ GpGpGp vvuu
v
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K-means and the EM algorithm

Expectation Maximization (EM) Algorithm overview:
Initialize K clusters: C1, …, CK 

(μj, Σj) and P(Cj) for each cluster j

1. Estimate which cluster each data point belongs to

2. Re-estimate cluster parameters

3. Repeat 1 and 2 until convergence

)|( ij xCp

)(),,( jjj CpΣμ

Expectation step

Maximization step
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EM algorithm for Mixture of Gaussians

E step: Compute probability of membership in cluster based 
on output of previous M step (p(xi|Cj) = Gaussian(μj, Σj))

M step: Re-estimate parameters based on output of E step
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Results from the EM algorithm

Input data:

(μj, σj)
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Recall: Generative versus Recognition Models

];|[ Gp vu

];|[ Gp uvCauses  v

Data u

Generative 
model

Recognition 
model

(likelihood)

(posterior) Instead of clusters, 
what if data was 
generated by linear 
superposition of 
causes?
(e.g., an image 
composed of several 
features)
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Linear Generative Model

Suppose input u is represented by linear superposition of 
causes v1, v2, …, vk and “features” gi:

Problem: For a set of inputs u, estimate causes vi for each u
and learn feature vectors gi (also called basis vectors/filters)

Idea: Find v and G that minimize reconstruction errors:
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Probabilistic Interpretation

E is the same as the negative log likelihood of data:
Likelihood = Gaussian with mean Gv and covariance I

Find v and G that maximize:

),;(];|[ IGNGp vuvu =
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= Joint probability of v and u

Prior for causes (what should this be?)
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What do we know about the causes v?

We would like the causes to be independent
If cause A and cause B always occur together, then perhaps 
they should be treated as a single cause AB?

Examples: 
Image: Composed of several independent edges
Sound: Composed of independent spectral components
Objects: Composed of several independent parts

Idea 1: We would like:

Idea 2: If causes are independent, only a few of them will be 
active for any input va will be 0 most of the time but high 
for certain inputs sparse distribution for p[va;G]

];[];[ GvpGp
a

a∏=v
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Prior Distributions for Causes

))(exp(];[ ∏∝
a

avgGp v

||)( vvg −=

)1ln()( 2vvg +−=

Spikes in area IT in 
monkey viewing TV

Possible prior 
distributions

Log prior

sparse
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Finding the optimal v and G

Want to maximize:

Approximate EM algorithm: 
E step: Maximize F with respect to v keeping G fixed

Set dv/dt ∝ dF/dv (“gradient ascent/hill-climbing”)
M step: Maximize F with respect to G, given the v above

Set dG/dt ∝ dF/dG (“gradient ascent/hill-climbing”)

KvgGG

GpGpGF

a
a

T ++−−−=

+=

∑ )()()(
2
1

];[ln];|[ln),(

vuvu

vvuv



35R. Rao, 528: Lecture 12

Network for Estimating v

)( vu G− vG

)()( vvu
v

v gGG
d
dF

dt
d T ′+−==τ

Error Sparseness constraint

Firing rate 
dynamics

PredictionError

Correction

• Similar to Kalman filtering
• Suggests a role for feedback pathways in the cortex (Rao & Ballard, 1999)
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Learning the Synaptic Weights G

)( vu G− vG

T
G G

dG
dF

dt
dG vvu )( −==τ Hebbian!

(similar to Oja’s rule)
Learning 

rule

PredictionError
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Results of Learning G for Natural Images

Each square is a column 
gi of G (obtained by 
collapsing rows of the 
square into a vector) 

vgu Gv
i

ii ==∑

Any image u can be 
expressed as:

Almost all the gi
represent local edge 
features
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Other Related Ideas

Independent Component Analysis (ICA): Another algorithm 
for finding independent causes based on linear model

Assumes same number of inputs as outputs
Assumes G is invertible (W = G-1)
Finds optimal W using sparse prior p[v] ∝ 1/cosh(v)
Reference: Bell & Sejnowski (1995), texbook p. 384

Predictive Coding: An algorithm for eliminating redundancy 
by subtracting away predictable parts from a signal u

Sparse coding network does predictive coding:
Can be extended to hierarchies
Related to Kalman filtering (Rao, 1999)
References: Rao & Ballard (1997, 1999)

)( vu G−
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Next Class: Supervised Learning

Things to do:
Finish reading Chapters 8 and 10 
Do Homework #4 (last homework!)
Work on mini-project

Have a great 
weekend!
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