CSE/NEUBEH 528 Lecture 12: Unsupervised Learning (Chapters 8 & 10)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg Lecture figures are from Dayan & Abbott's book http://people.brandeis.edu/~abbott/book/index.html

Gameplan for Today

- Unsupervised (Representational) Learning
 - Temporally asymmetric learning
 - Hebb rule and Principal Component Analysis (PCA)
 - Causal Models
 - Generative versus Recognition Models
 - Density Estimation and EM
 - Sparse Coding
 - Independent Component Analysis (ICA)
 - Predictive Coding

Flashback: Hebb Rule

 "If neuron A frequently contributes to the firing of neuron B, then the synapse from A to B should be strengthened"

$$v = \mathbf{w}^T \mathbf{u} = \mathbf{u}^T \mathbf{w}$$

Basic Hebb Rule:

$$\tau_{w} \frac{d\mathbf{w}}{dt} = \mathbf{u}v$$

Waittaminute...what did Hebb really say?

If neuron A frequently <u>contributes</u> to the firing of neuron B, then the synapse from A to B should be strengthened

Causality (order of input/output) is important, not just correlation

Evidence for Causal Learning Rules: Spike-Timing Dependent Synaptic Plasticity (STDP)

(Note: This is just a simulation I did a while back, not real data!)

STDP in the Vertebrate Brain

R. Rao, 528: Lecture 12

(This is real data!)

Temporally Asymmetric Hebb Rule (STDP)

What does STDP do in a Recurrent Network?

STDP allows prediction in the navigating rat

Back to traditional Hebb rule: $\tau_{w} \frac{d\mathbf{w}}{dt} = \mathbf{u}v$ What does this do?

(Flashback from last time:

Eigenvector analysis shows that...)

Hebb Rule implements PCA!

Hebb rule *rotates* weight vector to align with principal eigenvector of input correlation/covariance matrix (i.e. R. Rao, 528: Lecture 12 direction of maximum variance)

What about this data?

PCA does not correctly describe the data

Input data is made up of two clusters (Gaussians) \rightarrow two "causes"

R. Rao, 528: Lecture 12

Causal Models

- Main goal of unsupervised learning: Learn the <u>"Causes"</u> underlying the input data
- <u>Example</u>: Learn the means and variances of the two Gaussians A and B that generated this data
- Want: Two neurons A and B that learn the means and variances based solely on input data (samples from distribution)

Generative versus Recognition Models

How do we learn the parameters (e.g., mean)?

Idea: Each neuron represents one cluster

Minimize sum squared distance of each point to closest cluster center

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

Break it down into 2 subproblems

Suppose you are given the cluster centers c_i

- Q: how do you assign points to a cluster?
- A: for each point p, choose closest c_i
- Suppose you are given the points in each cluster
 - Q: how to re-compute each cluster's center?
 - A: choose c_i to be the mean of all the points in that cluster

Randomly initialize the cluster centers (synaptic weights)

R. Rao, 528: Lecture 12

Re-estimate cluster centers (adapt synaptic weights)

Result of first iteration

R. Rao, 528: Lecture 12

Second iteration

R. Ra

Result of second iteration

K-means clustering

Properties

- ⇒ Will always converge to some solution
- Can be a "local minimum"
 - does not always find the global minimum of objective function:

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

K-means and probability density estimation

Can formalize K-means as probability density estimation

✤ Model data as a mixture of K Gaussians: $p[\mathbf{u};G] = \sum_{\mathbf{v}} p[\mathbf{u} | \mathbf{v};G]p[\mathbf{v};G]$

Estimate not only means but also covariances

Expectation Maximization (EM) Algorithm overview:

- ⇒ Initialize K clusters: $C_1, ..., C_K$ (μ_j, Σ_j) and P(C_j) for each cluster j
- 1. Estimate which cluster each data point belongs to $p(C_j | x_i) \longrightarrow \text{Expectation step}$
- 2. Re-estimate cluster parameters
 - $(\mu_j, \Sigma_j), p(C_j) \longrightarrow Maximization step$
- 3. Repeat 1 and 2 until convergence

EM algorithm for Mixture of Gaussians

♦ E step: Compute probability of membership in cluster based on output of previous M step ($p(x_i|C_i) = \text{Gaussian}(\mu_i, \Sigma_i)$)

$$p(C_j | x_i) = \frac{p(x_i | C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i | C_j) \cdot p(C_j)}{\sum_j p(x_i | C_j) \cdot p(C_j)}$$
(Bayes rule)

♦ M step: Re-estimate parameters based on output of E step

$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad \sum_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

(Learn parameters)

Results from the EM algorithm

Recall: Generative versus Recognition Models

Linear Generative Model

✦ Suppose input u is represented by linear superposition of causes v₁, v₂, ..., v_k and "features" g_i:

$$\mathbf{u} = \sum_{i} \mathbf{g}_{i} \mathbf{v}_{i} = G \mathbf{v}$$

- Problem: For a set of inputs u, estimate causes v_i for each u and learn feature vectors g_i (also called basis vectors/filters)
- ✦ Idea: Find v and G that minimize reconstruction errors:

$$E = \frac{1}{2} |\mathbf{u} - \sum_{i} \mathbf{g}_{i} v_{i}|^{2} = \frac{1}{2} (\mathbf{u} - G\mathbf{v})^{T} (\mathbf{u} - G\mathbf{v})$$

Probabilistic Interpretation

★ E is the same as the negative log likelihood of data: Likelihood = Gaussian with mean Gv and covariance I $p[\mathbf{u} \mid \mathbf{v}; G] = N(\mathbf{u}; G\mathbf{v}, I)$ $E = -\ln p[\mathbf{u} \mid \mathbf{v}; G] = \frac{1}{2} (\mathbf{u} - G\mathbf{v})^T (\mathbf{u} - G\mathbf{v}) + C$

Find v and G that maximize:

$$F(\mathbf{v}, G) = \left\langle \ln p[\mathbf{v}, \mathbf{u}; G] \right\rangle$$
 Joint probability of **v** and **u**
= $\left\langle \ln p[\mathbf{u} | \mathbf{v}; G] + \ln p[\mathbf{v}; G] \right\rangle$

Prior for causes (what should this be?) 31

What do we know about the causes **v**?

We would like the causes to be *independent* If cause A and cause B always occur together, then perhaps they should be treated as a single cause AB?

✦ Examples:

Image: Composed of several independent edges

- Sound: Composed of independent spectral components
- Objects: Composed of several independent parts
- ◆ Idea 1: We would like: $p[\mathbf{v};G] = \prod p[v_a;G]$
- ◆ Idea 2: If causes are independent, only a few of them will be active for any input → v_a will be 0 most of the time but high for certain inputs → sparse distribution for $p[v_a;G]$

Prior Distributions for Causes

Finding the optimal \mathbf{v} and G

✦ Want to maximize:

$$F(\mathbf{v}, G) = \left\langle \ln p[\mathbf{u} | \mathbf{v}; G] + \ln p[\mathbf{v}; G] \right\rangle$$
$$= \left\langle -\frac{1}{2} (\mathbf{u} - G\mathbf{v})^T (\mathbf{u} - G\mathbf{v}) + \sum_a g(v_a) \right\rangle + K$$

Approximate EM algorithm:

- \Rightarrow E step: Maximize *F* with respect to **v** keeping G fixed
 - ♦ Set dv/dt ∝ dF/dv ("gradient ascent/hill-climbing")
- \Rightarrow M step: Maximize *F* with respect to G, given the **v** above
 - Set $dG/dt \propto dF/dG$ ("gradient ascent/hill-climbing")

Network for Estimating v

- Similar to Kalman filtering
- Suggests a role for feedback pathways in the cortex (Rao & Ballard, 1999)

Learning the Synaptic Weights G

$$\begin{array}{c} \mathbf{v} \\ \mathbf{G}^{\mathrm{T}} \\ \mathbf{w} \\ \mathbf{u} \\ \mathbf{v} \\ \mathbf{$$

Learning
rule
$$\tau_G \frac{dG}{dt} = \frac{dF}{dG} = (\mathbf{u} - G\mathbf{v})\mathbf{v}^T$$
 Hebbian!
(similar to Oja's rule)

Results of Learning G for Natural Images

Each square is a column \mathbf{g}_i of *G* (obtained by collapsing rows of the square into a vector)

Almost all the **g**_i represent local edge features

Any image **u** can be expressed as:

$$\mathbf{u} = \sum_{i} \mathbf{g}_{i} \mathbf{v}_{i} = G \mathbf{v}$$

Other Related Ideas

- ◆ Independent Component Analysis (ICA): Another algorithm for finding independent causes based on linear model
 ⇒ Assumes same number of inputs as outputs
 ⇒ Assumes G is invertible (W = G⁻¹)
 ⇒ Finds optimal W using sparse prior p[v] ∝ 1/cosh(v)
 ⇒ Reference: Bell & Sejnowski (1995), texbook p. 384
- ◆ <u>Predictive Coding</u>: An algorithm for eliminating redundancy by subtracting away predictable parts from a signal u
 ⇒ Sparse coding network does predictive coding: (**u** G**v**)
 ⇒ Can be extended to hierarchies
 - ⇔ Related to Kalman filtering (Rao, 1999)
 - ⇔ References: Rao & Ballard (1997, 1999)

Next Class: Supervised Learning

Things to do:

⇔ Finish reading Chapters 8 and 10

- Do Homework #4 (last homework!)
- ⇔ Work on mini-project

