CSE/NB 528 Lecture 11: Plasticity and Learning (Chapter 8)

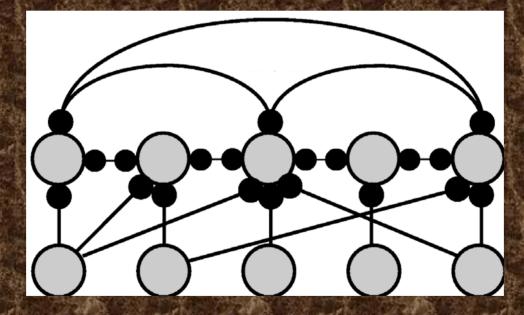
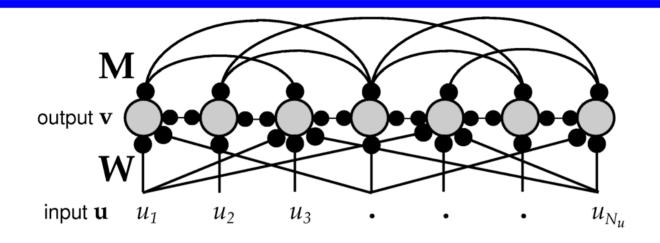


Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg Lecture figures are from Dayan & Abbott's book http://people.brandeis.edu/~abbott/book/index.html

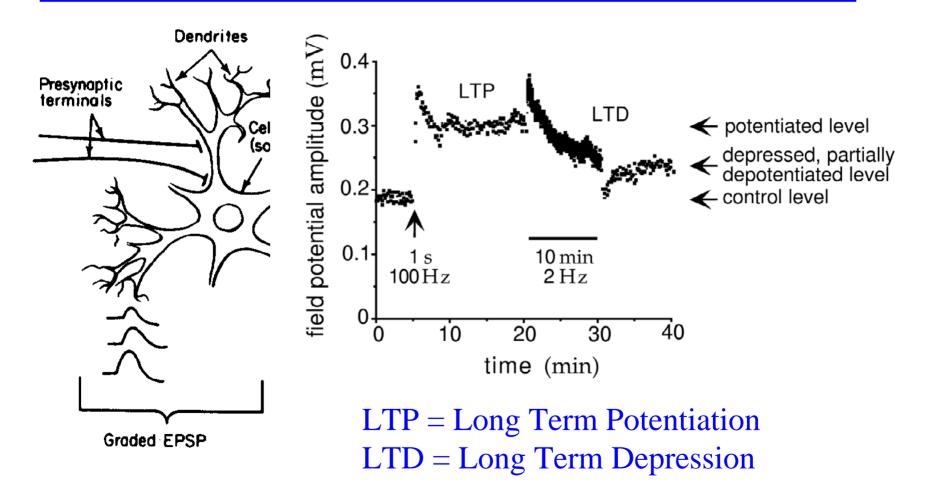
R. Rao, 528: Lecture 11

Gameplan for Today



- Plasticity and Learning
 - Types: Unsupervised, Supervised, and Reinforcement learning
- ✦ Unsupervised Learning
 - ↔ Hebb rule and its variants (Covariance, BCM, Oja rule)
 - Principal Component Analysis (PCA)
 - Temporally Asymmetric Hebbian learning

So far, we have been analyzing networks with *fixed* sets of synaptic weights W and M


Can these be adapted in response to inputs?

Plasticity and Learning: Adapting the Connections

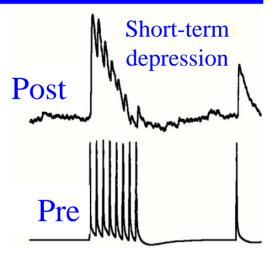
- Question 1: How do we adapt the synaptic weights W and M to solve useful tasks?
- Question 2: How does the brain do it?

Synaptic Plasticity in the Brain

Other Forms of Plasticity in the Brain

<u>Short-Term Synaptic Plasticity</u>

- Short-term depression/facilitation
- Dynamics may change on a long-term basis via LTP/LTD
- <u>Changes to intrinsic excitability of cell</u>
 - Density and distribution of various channels (ionic conductances)
 Currently active research area
 - ⇔ Currently active research area


◆ Growth and morphological changes in dendrites △ Currently active research area

⇔ Currently active research area

✦ Addition of new neurons?

 \Rightarrow Hot topic of research these days...

R. Rao, 528: Lecture 11

The Theory: Classification of Learning Algorithms

Unsupervised Learning

- Synapses adapted based solely on inputs
- ⇒ Network self-organizes in response to *statistical patterns* in input
- Similar to Probability Density Estimation in statistics

Supervised Learning

- Synapses adapted based on inputs and desired outputs
- Sexternal "teacher" provides desired output for each input
- ⇔ Goal: Function approximation

Reinforcement Learning

- Synapses adapted based on inputs and (delayed) reward/punishment
- Goal: Pick outputs that *maximize total expected future reward*

Similar to optimization based on Markov decision processes R. Rao, 528: Lecture 11

Let's start with Unsupervised Learning

Consider a single neuron receiving feedforward inputs from other neurons (e.g. from the retina)

The Grand-Daddy of Unsupervised Learning

- Rule hypothesized by Donald Hebb in 1949
- ✦ Hebb's learning rule:

"If neuron A frequently contributes to the firing of neuron B, then the synapse from A to B should be strengthened"

Hebb's goal: Produce clusters of neurons ("*cell assemblies*") that fire together in response to a stimulus

Formalizing Hebb's Rule

• Consider a linear neuron: $v = \mathbf{w}^T \mathbf{u} = \mathbf{u}^T \mathbf{w}$

• Basic Hebb Rule:
$$\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{u}v$$
 (or $\mathbf{w} \leftarrow \mathbf{w} + \varepsilon \cdot \mathbf{u}v$)

• What is the average effect of this rule? $\tau_{w} \frac{d\mathbf{w}}{dt} = \langle \mathbf{u}v \rangle_{\mathbf{u}} = Q\mathbf{w}$

♦ Q is the input correlation matrix:

$$Q = \left\langle \mathbf{u}\mathbf{u}^T \right\rangle$$

Variants of Hebb's Rule

Pure Hebb only increases synaptic weights (LTP)
What about LTD?

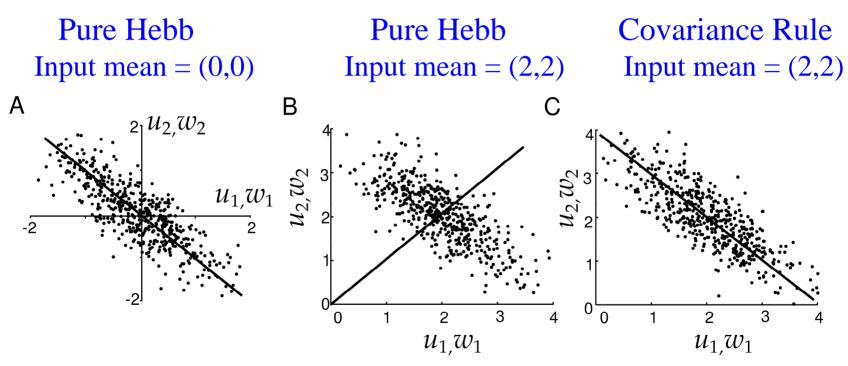
Covariance rules:

$$\tau_{w} \frac{d\mathbf{w}}{dt} = (\mathbf{u} - \mathbf{\theta}_{u}) v$$

$$\tau_{w} \frac{d\mathbf{w}}{dt} = \mathbf{u}(v - \theta_{v})$$

(Note: LTD also for no input and some output)

(Note: LTD also for no output and some input)


Are these learning rules stable?

On Board Analysis, leading up to Oja's rule

What does the Hebb rule do anyway?

Eigenvector analysis of Hebb rule...

Hebb Rule implements Principal Component Analysis (PCA)!

Hebb rule *rotates* weight vector to align with principal eigenvector of input correlation/covariance matrix (i.e. direction of maximum variance)

R. Rao, 528: Lecture 11

Next Class: Unsupervised Learning

Things to do:

⇔ Finish Chapter 8 and Start Chapter 10

- Homework 3 due on Thursday May 14
- ⇔ Start mini-project

