

Course Summary (thus far)

- Neural Encoding
 - ❖ What makes a neuron fire? (STA, covariance analysis)
 - ⇒ Poisson model
- Neural Decoding
 - Stimulus Discrimination based on firing rate
 - ⇒ Spike-train based decoding of stimulus
 - ⇒ Population decoding (Bayesian estimation)
- Single Neuron Models
 - RC circuit model of membrane
 - ⇒ Integrate-and-fire model
 - Conductance-based and Compartmental Models

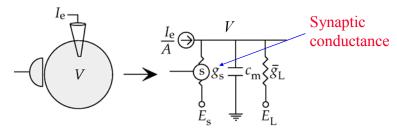
Today's Agenda

- Computation in Networks of Neurons
 - ⇒ From spiking to firing-rate based networks
 - ⇒ Feedforward Networks
 - ▶ E.g. Coordinate transformations in the brain
 - ⇒ Linear Recurrent Networks
 - ▶ Can amplify inputs
 - ▶ Can integrate inputs
 - ▶ Can function as short-term memory

R. Rao, CSE528: Lecture 9

1

Modeling Synaptic Inputs from other Neurons



$$\tau_m \frac{dV}{dt} = -(V - E_L) - r_m g_s (V - E_s) + I_e R_m$$

 $g_s = g_{s, \max} P_{rel} P_s \leftarrow$ Probability of postsynaptic channel opening (= fraction of channels opened)

Probability of transmitter release given an input spike

R. Rao, CSE528: Lecture 9

Simplified Synapse Model

♦ "Alpha Function" model:

Synaptic kernel
$$K(t) = \frac{t}{\tau_{peak}} e^{-\frac{t}{\tau_{peak}}}$$

$$K(t) = \frac{t}{\tau_{peak}} e^{-\frac{t}{\tau_{peak}}}$$

$$V(t) = \frac{t}{\tau_{peak}} e^{-\frac{t}{\tau_{peak}}}$$

Synaptic current:
$$I_s(t) = w_s \int_{-\infty}^{t} K(t-\tau) \rho_s(\tau) d\tau$$

where $\rho_s(t)$ is the input spike train:

$$\rho_{\rm s}(\tau) = \Sigma_{\rm i} \, \delta(\tau - t_{\rm i})$$
 (t_i are the spike times)

R. Rao, CSE528: Lecture 9

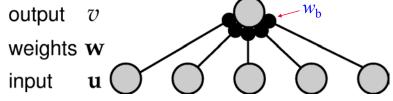
5

Modeling Networks of Neurons

- ◆ Option 1: Use *spiking* neurons (e.g. I & F neurons)
 - *⇒ Advantages*: Allows computation and learning based on:
 - **▶** Spike Timing
 - ▶ Spike Correlations/Synchrony between neurons
 - *⇒ Disadvantages*: Computationally expensive
- ◆ Option 2: Use neurons with *firing-rate outputs*
 - Advantages: Greater efficiency, scales well to large networks
 - *⇒ Disadvantages*: Ignores spike timing issues
- ◆ Question: How are these two approaches related?

R. Rao, CSE528: Lecture 9

Network Notation



Current at synapse
$$b$$
 $I_b(t) = w_b \int_{-\infty}^{t} K(t-\tau)\rho_b(\tau)d\tau$ Spike train $\rho_b(t)$ $\approx w_b \int_{-\infty}^{t} K(t-\tau)u_b(\tau)d\tau$ Firing rate $u_b(t)$

synaptic $I_s(t) = \sum_b I_b(t)$ current

R. Rao, CSE528: Lecture 9

Synaptic Current Dynamics

• If synaptic kernel *K* is an exponential function: $K(t) = e^{-\frac{t}{\tau_s}} / \tau_s$

Differentiating
$$I_s(t) = \sum_b w_b \int_{-\infty}^t K(t-\tau)u_b(\tau)d\tau$$

We get
$$\tau_s \frac{dI_s}{dt} = -I_s + \sum_b w_b u_b$$

= $-I_s + \mathbf{w} \cdot \mathbf{u}$

R. Rao, CSE528: Lecture 9

Output Firing-Rate Dynamics

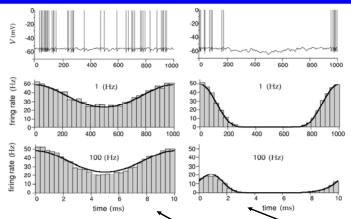
- \bullet How is the output firing rate ν related to synaptic inputs?
- On-board derivations...

(see also pages 234-236 in the text)

R. Rao, CSE528: Lecture 9

(

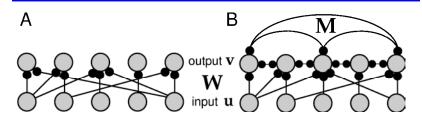
How good are the Firing Rate Models?



Firing rate v(t) = F(I(t)) describes this well but not this case

 $_{\text{R. Rao, CSE528: Lecture 9}}$ Input $I(t) = I_0 + I_1 cos(\omega t)$

Feedforward versus Recurrent Networks



$$\tau \frac{d\mathbf{v}}{dt} = -\mathbf{v} + F(\mathbf{W}\mathbf{u} + \mathbf{M}\mathbf{v})$$

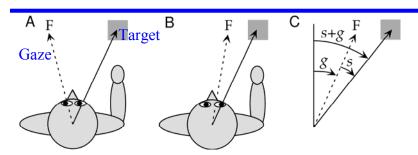
Output Decay Input Feedback

(For feedforward networks, matrix M = 0)

R. Rao, CSE528: Lecture 9

11

The Problem of Coordinate Transformations



g = gaze angle *relative to body*

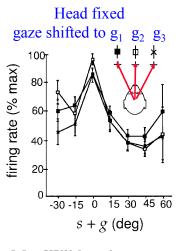
s = stimulus or target angle *relative to gaze (retinal coordinates)* s+g = stimulus relative to body

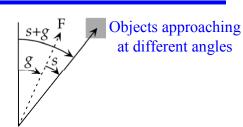
Same arm movement required in A and B but s and g are different

How does the brain solve this problem?

R. Rao, CSE528: Lecture 9

Body-Based Representation in the Monkey





Same tuning curve regardless of gaze angle

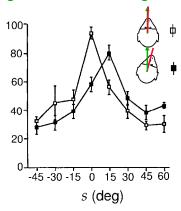
Premotor cortex neuron responds to stimulus location *relative to body*, not retinal image location

R. Rao, CSE528: Lecture 9

13

Body-Based Representation in the Monkey

When head is moved but gaze remains unchanged:

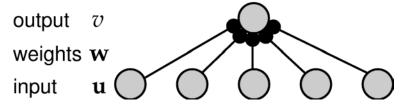


After head is moved 15°, objects approaching at 15° in retinal image now elicit the highest response → Tuning curve in retinal coordinates has shifted

R. Rao, CSE528: Lecture 9

Suggested Feedforward Network

Output: Premotor Cortex Neuron with Body-Based Tuning Curves



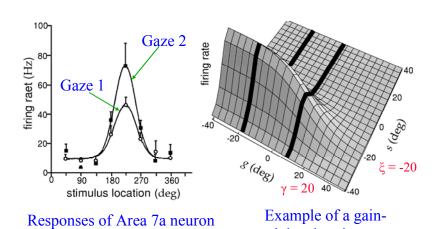
Input: Area 7a Neurons with Gaze-Dependent Tuning Curves

Input neurons exhibit gaze-dependent gain modulation

R. Rao, CSE528: Lecture 9

15

Gaze-Dependent Gain Modulation



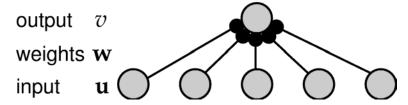
R. Rao, CSE528: Lecture 9

16

modulated tuning curve

What should the weights be?

Output: Premotor Cortex Neuron with Body-Based Tuning Curves



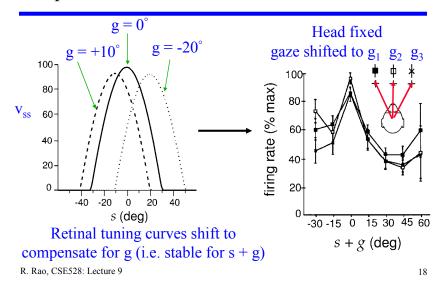
Input: Area 7a Neurons with Gaze-Dependent Tuning Curves

Weights $w(\xi,\gamma)$ need to be a function of $\xi+\gamma$

R. Rao, CSE528: Lecture 9

17

Output of a Simulated Feedforward Network



Next Class: More on Networks

- ♦ Things to do:

 - ⇒ Finish reading Chapter 7⇒ Homework #3 due next Tuesday
 - Start working on mini-project

R. Rao, CSE528: Lecture 9