

- Synapses
- Cable equation
- Multiple compartments
- Beyond Hodgkin-Huxley
- From dynamical systems

Chemical Synapses

- Neurotransmitters
 - Glutamate (+)
 - AMPA
 - NMDA
 - GABA (-)
 - GABA_A

Malenka and Nicoll, 1999

Quantal Hypothesis

Koch, p. 312

binomial distribution:

$$f(k;n,p) = \binom{n}{k} p^k (1-p)^{n-k}$$

- Overall effect R = npq
 - n = number of release sites
 - drawn from some probability distribution (e.g. binomial)
 - at most, I vesicle is release per presynaptic spike
 - p = probability of release for release site
 - q = postsynaptic effect

α-synapse

$$\Delta V_m^{non-NMDA} = wte^{-t/t^{peak}}$$
$$\Delta V_m^{NMDA} = c(V_m)e^{-t/\tau_1} - e^{-t/\tau_2}$$

Synaptic Plasticity

Abbott and Nelson, Nat Neurosci, 2000

Cable Equation

- How does the membrane voltage change over space?
- Why does myelin cause the speed of propagation to increase?

Cable Equation

Myelinated Axon

Multiple Compartments

$$c_m \frac{dV_{\mu}}{dt} = -i_m^{\mu} + \frac{I_e^{\mu}}{A_{\mu}} + g_{\mu,\mu+1} \left(V_{\mu+1} - V_{\mu} \right) + g_{\mu,\mu-1} \left(V_{\mu-1} - V_{\mu} \right)$$

Beyond Hodgkin-Huxley

- Traub-Miles (~hippocampal/cortical)
 - Na, K, Leak, M or Ca-AHP
- Fleidervish (pyramidal cortical) or Miles (spinal motor neuron)
 - Slow Na inactivation
- Erisir (fast-spiking cortical)
 - Slow K
- Connor-Stevens (crab)
 - A Current (slowly inactivating K current)

Connor-Stevens

From Dynamical Systems...

Canonical Models

- Quadratic IF
 - Type I (saddle-node on invariant circle)
- Phase model
 - nonlinear oscillators with exponentially stable limit cycle attractors
- Simple model
 - local canonical for HH-type models

Izhikevich, Dynamical Systems in Neuroscience, 2007

Simple Model

- $\frac{dv}{dt} = I + v^2 u,$ $\frac{du}{dt} = a(bv - u)$ if $v \ge 1$, then $v \leftarrow c, u \leftarrow u + d$
 - Advantages
 - 4 parameters
 - Simple (canonical)
 - Disadvantages
 - No connection between model and biophysical parameters
 - Predictions for in vitro/ vivo neurons may be difficult

Hypotheses

- 2 "channels" are sufficient to describe neuronal computation
- 2D phase portraits can successfully depict even complicated neuronal function
- Biophysical parameters can be mapped into this 2D space