CSE/NB 528

Lecture 13: Supervised Learning
(Chapter 8)

Image from | dean:Ja,asu.edu/news/images/ubep2001/neuron3.jpg
Le igur m Dayan & Abb ook
http://people.brandeis.edu/~abbott/book/index.html

What’s on the menu today?

0 Unsupervised Learning
@ Sparse Coding and ICA

(Copyright, Gary Larson)

“n, peother . . . Not hamsters again”

0 Supervised Learning

© Why supervised learning?

0 Classification

0 Function Approximation
@ Perceptrons & Learning Rule
@ Linear Separability: Minsky-Papert deliver the bad news
@ Multilayer networks to the rescue
< Function Approximation
< Backpropagating (errors)

R. Rao, 528: Lecture 13 2

Unsupervised Learning: Sparse Coding and ICA

0 Suppose input u is represented by linear superposition of
causes vy, v,, ..., v, and “features” g

U:Zgi =GV

O Problem: For a set of inputs u, estimate causes v; for each u
and learn feature vectors g; (also called basis vectors/filters)

O Idea: Find v and G that minimize reconstruction errors:
1 1
E =5|u —Zgivl. |2=E(u -Gv) (u-Gv)

R. Rao, 528: Lecture 13 3

Probabilistic Interpretation

0 E is the same as the negative log likelihood of data
« Likelihood = Gaussian with mean Gv and covariance /

plu[v;G]=N(uw;Gv,I)
E=-Inp[u|v;G] :%(U—GV)T(H—GV)‘FC

O Find v and G that maximize:
F(v,G)= <ln plv,u; G]> Joint probability of v and u
= (In p[u| v;G]+1n p[v; G])

R. Rao, 528: Lecture 13 Prior for causes (what should this be?) 4

What do we know about the causes v?

0 We would like the causes to be independent
@ If cause A and cause B always occur together, then perhaps
they should be treated as a single cause AB?

0 Examples:
© Image: Composed of several independent edges
© Sound: Composed of independent spectral components
< Objects: Composed of several independent parts

0 Idea 1: We would like: p[v;G]= |_| plv,;G]

0 Idea 2: If causes are independent, only a few of them will be
active for any input = v, will be 0 most of the time but high
for certain inputs > sparse distribution for p[v,;G]

R. Rao, 528: Lecture 13 5

Prior Distributions for Causes

Possible prior Log prior
distributions

gv)=-1v|

exponential

= 0.4
< sparse
jol
g) / g(v)=—In(1+v%)
l '.':_.‘\\Cauchy
=
5

plv;GIO] exp(g(v,)

R. Rao, 528: Lecture 13

Finding the optimal v and G

O Want to maximize:

F(v,G)=(In p[u| v;G]+In p[v;G])

=<—%<u—Gv)T(u—Gv)+2g(va)>+1<

0 Alternate between:
1. Maximize F with respect to v keeping G fixed

O Set dv/dt [J dF/dv (“gradient ascent/hill-climbing”)
2. Maximize F with respect to G, given the v above

O Set dG/dt U dF/dG (“gradient ascent/hill-climbing”)

R. Rao, 528: Lecture 13

Network for Estimating v and Learning G

Tﬂ:d—F:GT(u—Gv)+g'(v)
! f

Firing rate
dynamics

dt dv

Error Sparseness constraint

\LG

GV Prediction

G'A

Error (u —GV) u

Learning r d_G - d_F - (ll— GV)VT Hebbian!
rule S dt

(similar to Oja’s rule)

R. Rao, 528: Lecture 13 8

Results of Learning G for Natural Images

HiNSEaASNINSE

IHIEIII!-I
NENESNERNAE
SMANENENNS
UNEEEINNEN
IRNENENSAWE

AEdSEUEANEES
EEEENEENDnNE
EEESISAMSRENE

R. Rao, 528: Lecture 13

Each square is a column
g, of G (obtained by
collapsing rows of the
square into a vector)

Almost all the g;
represent local edge
features

Any image u can be
expressed as:

u= ng =Gv

What if there 1s a “teacher” telling you the
desired output for each input?

Can you learn to generalize to novel inputs?

R. Rao, 528: Lecture 13

Supervised Learning

0 Two Primary Tasks
1. Classification
O Inputs u,, u,, ... and discrete classes C,, C,, ..., C,
O Training examples: (u,, C,), (u,, C), etc.
O Learn the mapping from an arbitrary input to its class
0O Example: Inputs = images, output classes = face, not a face

2. Function Approximation (regression)
O Inputs u,, u,, ... and continuous outputs v,, v,, ...
0 Training examples: (input, desired output) pairs
0 Learn to map an arbitrary input to its corresponding output
0 Example: Highway driving
Input = road image, output = steering angle

R. Rao, 528: Lecture 13 11

Classification using “Perceptrons”

0 Fancy name for a type of layered feedforward networks

0 Uses artificial neurons (““units”) with binary inputs and
outputs

Multilayer

Single-layer

R. Rao, 528: Lecture 13 12

Perceptrons use “Threshold Units”

0 Artificial neuron:
< m binary inputs (-1 or 1) and 1 output (-1 or 1)

=~ Synaptic weights w;; v.=0O() wu. —U
< Threshold W, l (ZJ: Y IUZ)

O(x)=1ifx=0and-1ifx<0

Wiy Weighted Sum Threshold

Inputs u W\\

i2 Output v;
(-1 or+1) Z (-1 or +1)
Wis
Hi
R. Rao, 528: Lecture 13 13

What does a Perceptron compute?

0 Consider a single-layer perceptron
< Weighted sum forms a linear hyperplane

D Wytt; = 4 =0
j

< Everything on one side of hyperplane is in class 1 (output =
+1) and everything on other side is class 2 (output = -1)

= Any function that is linearly separable can be computed by
a perceptron

R. Rao, 528: Lecture 13 14

Linear Separability

0 Example: AND is linearly separable
“aANDb=1ifandonlyifa=1andb=1

| Sy LD
Linear hyperplane _® " 1 1.0°
N
A
1 I AN
o -] 0
Perceptron for AND
R. Rao, 528: Lecture 13 15

Perceptron Learning Rule

0 Given inputs u and desired output vd, adjust w as follows:
1. Compute error signal e = (v4 — v) where v is the current output
2. Change weights according to the error e

= For positive inputs, increase weights if error is positive and
decrease if error is negative (opposite for negative inputs)

W > W+ E(Vd - V)ll A - Bmeans replace 4 with B

R. Rao, 528: Lecture 13 16

Linear Inseparability

0 Single-layer perceptron with threshold units fails if
classification task is not linearly separable
< Example: XOR
@ aXORb=1liff(a=-1,b=1)or(a=1,b=-1)
< No single line can separate the “yes” (+1)
outputs from the “no” (- 1) outputs!

R. Rao, 528: Lecture 13 17

Solution in 1980s: Multilayer perceptrons

0 Removes limitations of single-layer networks
@ Can solve XOR

0 An example of a two-layer perceptron that computes XOR

(03

(19

X y
0 Outputis +1 ifand only ifx + y—-20(x+y—-1.5)-0.5>0

R. Rao, 528: Lecture 13 (Here, inputs x, y are assumed to be 0 or 1) 18

What if you want to approximate a
continuous function?

Can a network learn to drive?

R. Rao, 528: Lecture 13

Example Network

Left Ahcad Right

Get steering angle _,
from a human driver

30 Output
Units

Desired Output:
d=(d, d, ... dy)

Get current

. -
camera image

30x32 Sensor
Input Retina

R. Rao, 528: Lecture 13 Input u = (u; u, ... ugy,) =image pixels

Function Approximation

0 We want networks that can learn a function

< Network maps real-valued inputs to real-valued outputs

< Want to generalize to predict outputs for new inputs

< Idea: Given input data, minimize errors between
network’s output and desired output by adapting weights

R. Rao, 528: Lecture 13

21

Sigmoidal Networks
The most common
activation function:
g(w'u) Output Sigmoid function:
v 1
Input nodes gla)= 1+ e P

u=(u, u u)f

R. Rao, 528: Lecture 13

g(a)
1"‘/

T
a

(non-linear
“squashing” function)
22

Gradient-Descent Learning (“Hill-Climbing”)

0 Given training examples (u”,d”) (m =1, ..., N), define an
error function (cost function or “energy” function)

EW =oY@ =" v =)

0 Would like to change w so that E(w) is minimized

< Gradient Descent: Change w in proportion to —d£/dw (why?)
dE

W o> W—&—
dw

dE av"

- dm _Vm - dm _Vm 1 wTum um
I ;()T’w ;()g ()

R. Rao, 528: Lecture 13 23

“Stochastic” (or On-line) Gradient Descent

0 What if the inputs only arrive one-by-one?

0 Stochastic gradient descent approximates sum over all inputs
with an “on-line” running sum:

dE,
W o> W—§&—
dw Also known as
% =—(d" _vm)gl(wTum)um the “delta rule”
dw NI or “LMS rule”
delta = error

R. Rao, 528: Lecture 13 24

But wait....

0 Delta rule tells us how to modify the connections from input

to output (one layer network)
© One layer networks are not that interesting (remember XOR?)

0 What if we have multiple layers?

Output v= (v, v, ... v;)T; Desired =d

/ How do we adapt these
“hidden” connections?

Inputu=(u; u, ... u)’

R. Rao, 528: Lecture 13 25

Let’s Backpropagate (Errors)

0 Backpropagation = gradient-descent learning for multilayer
feedforward networks

0 Idea: Propagate credit/blame for errors back to internal nodes
< Use chain rule (from calculus) to change weights for
internal “hidden” nodes

Backpropagate Delta rule
this to correct all Back |
weights 4« packprop rule

Input u = (u; u, ... u)’
R. Rao, 528: Lecture 13 26

Notation for Backprop

m
Iy

Find W and w that minimize
total squared output error:

1 m m
E(W,w)=_2 Jld" -v"

= 27 vy

R. Rao, 528: Lecture 13 27

Backpropagation (for Math lovers’ eyes only!)

0 Learning rule for hidden-output connection weights:

y y aw/y
dE U m m
aw. =2 =vg' QWx)x! Delta rule
oo i
0 Backpropagation rule for input-hidden connection weights:
E E £ Ox”
Wy - W, —& 0 But: 0 = 9 —[! {chain rule}
' ow,, Oow, 0x] Ow,
dE — m m I m I m m
dw = _Z (dz -V)g (Z VK/X_/)VV;/ @ (Z Wil)uk
Jjk m,i J k

R. Rao, 528: Lecture 13 28

Learning to Drive using Backprop

Sharp Straight
Lef Ahead

30 Output
Units

30x32 Sensor
Input Retina

One of the learned
“road features” w;

ALVINN (Autonomous Land Vehicle in a Neural Network)

30 Ot
st

R. Rao, 528: Lecture 13

7 § Trained using human

driver + camera images

After learning:

Drove up to 70 mph on
highway

Up to 22 miles without
intervention

Drove cross-country
largely autonomously

(Pomerleau, 1992)

30

Next Class: Reinforcement Learning

0 Things to do:
< Read Chapter 9
< Finish Last Homework (due Thu, May 24)
< Work on mini-project

I’ll be back :
(for reinf. learning)
s 0 _‘{v

R. Rao, 528: Lecture 13 31

