
1R. Rao, 528: Lecture 13

CSE/NB 528
Lecture 13: Supervised Learning

(Chapter 8)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html

2R. Rao, 528: Lecture 13

What’s on the menu today?

✦ Unsupervised Learning
Sparse Coding and ICA

✦ Supervised Learning
Why supervised learning?
➧ Classification
➧ Function Approximation

Perceptrons & Learning Rule
Linear Separability: Minsky-Papert deliver the bad news
Multilayer networks to the rescue
Function Approximation
Backpropagating (errors)

(Copyright, Gary Larson)

3R. Rao, 528: Lecture 13

Unsupervised Learning: Sparse Coding and ICA

✦ Suppose input u is represented by linear superposition of
causes v1, v2, …, vk and “features” gi:

✦ Problem: For a set of inputs u, estimate causes vi for each u
and learn feature vectors gi (also called basis vectors/filters)

✦ Idea: Find v and G that minimize reconstruction errors:

vgu Gv
i

ii ==∑

)()(
2
1||

2
1 2 vuvugu GGvE T

i
ii −−=−= ∑

4R. Rao, 528: Lecture 13

Probabilistic Interpretation

✦ E is the same as the negative log likelihood of data
Likelihood = Gaussian with mean Gv and covariance I

✦ Find v and G that maximize:

),;(];|[IGNGp vuvu =

CGGGpE T +−−=−=)()(
2
1];|[ln vuvuvu

];[ln];|[ln

];,[ln),(

GpGp

GpGF

vvu

uvv

+=

= Joint probability of v and u

Prior for causes (what should this be?)

5R. Rao, 528: Lecture 13

What do we know about the causes v?

✦ We would like the causes to be independent
If cause A and cause B always occur together, then perhaps
they should be treated as a single cause AB?

✦ Examples:
Image: Composed of several independent edges
Sound: Composed of independent spectral components
Objects: Composed of several independent parts

✦ Idea 1: We would like:

✦ Idea 2: If causes are independent, only a few of them will be
active for any input va will be 0 most of the time but high
for certain inputs sparse distribution for p[va;G]

];[];[GvpGp
a

a∏=v

6R. Rao, 528: Lecture 13

Prior Distributions for Causes

))(exp(];[∏∝
a

avgGp v

Possible prior
distributions

Log prior

sparse

||)(vvg −=

)1ln()(2vvg +−=

7R. Rao, 528: Lecture 13

Finding the optimal v and G

✦ Want to maximize:

✦ Alternate between:
1. Maximize F with respect to v keeping G fixed

➧ Set dv/dt ∝ dF/dv (“gradient ascent/hill-climbing”)
2. Maximize F with respect to G, given the v above

➧ Set dG/dt ∝ dF/dG (“gradient ascent/hill-climbing”)

KvgGG

GpGpGF

a
a

T ++−−−=

+=

∑)()()(
2
1

];[ln];|[ln),(

vuvu

vvuv

8R. Rao, 528: Lecture 13

Network for Estimating v and Learning G

)(vu G− vG

)()(vvu
v

v gGG
d
dF

dt
d T ′+−==τ

T
G G

dG
dF

dt
dG vvu)(−==τ Hebbian!

(similar to Oja’s rule)

Firing rate
dynamics

Learning
rule

Error Sparseness constraint

PredictionError

9R. Rao, 528: Lecture 13

Results of Learning G for Natural Images

Each square is a column
gi of G (obtained by
collapsing rows of the
square into a vector)

vgu Gv
i

ii ==∑

Any image u can be
expressed as:

Almost all the gi
represent local edge
features

10R. Rao, 528: Lecture 13

What if there is a “teacher” telling you the
desired output for each input?

Can you learn to generalize to novel inputs?

11R. Rao, 528: Lecture 13

Supervised Learning

✦ Two Primary Tasks
1. Classification

➧ Inputs u1, u2, … and discrete classes C1, C2, …, Ck
➧ Training examples: (u1, C2), (u2, C7), etc.
➧ Learn the mapping from an arbitrary input to its class
➧ Example: Inputs = images, output classes = face, not a face

2. Function Approximation (regression)
➧ Inputs u1, u2, … and continuous outputs v1, v2, …
➧ Training examples: (input, desired output) pairs
➧ Learn to map an arbitrary input to its corresponding output
➧ Example: Highway driving

Input = road image, output = steering angle

12R. Rao, 528: Lecture 13

Classification using “Perceptrons”

✦ Fancy name for a type of layered feedforward networks

✦ Uses artificial neurons (“units”) with binary inputs and
outputs

Multilayer
Single-layer

13R. Rao, 528: Lecture 13

Perceptrons use “Threshold Units”

✦ Artificial neuron:
m binary inputs (-1 or 1) and 1 output (-1 or 1)
Synaptic weights wij
Threshold µi

Inputs uj
(-1 or +1)

Output vi
(-1 or +1)

Weighted Sum Threshold

Θ(x) = 1 if x ≥ 0 and -1 if x < 0

)(ij
j

iji uwv µ−Θ= ∑

14R. Rao, 528: Lecture 13

What does a Perceptron compute?

✦ Consider a single-layer perceptron
Weighted sum forms a linear hyperplane

Everything on one side of hyperplane is in class 1 (output =
+1) and everything on other side is class 2 (output = -1)
Any function that is linearly separable can be computed by
a perceptron

0=−∑ ij
j

ijuw µ

15R. Rao, 528: Lecture 13

Linear Separability

✦ Example: AND is linearly separable
a AND b = 1 if and only if a = 1 and b = 1

Linear hyperplane
v

u1 u2

µ = 1.5
(1,1)

1

-1

1

-1
u1

u2

Perceptron for AND

16R. Rao, 528: Lecture 13

Perceptron Learning Rule

✦ Given inputs u and desired output vd, adjust w as follows:

1. Compute error signal e = (vd – v) where v is the current output

2. Change weights according to the error e
⇒ For positive inputs, increase weights if error is positive and

decrease if error is negative (opposite for negative inputs)

uww)(vvd −+→ ε BABA with replace means →

17R. Rao, 528: Lecture 13

Linear Inseparability

✦ Single-layer perceptron with threshold units fails if
classification task is not linearly separable

Example: XOR
a XOR b = 1 iff (a = -1, b = 1) or (a = 1, b = -1)
No single line can separate the “yes” (+1)
outputs from the “no” (-1) outputs! (1,1)

1

-1

1

-1
u1

u2

18R. Rao, 528: Lecture 13

Solution in 1980s: Multilayer perceptrons

✦ Removes limitations of single-layer networks
Can solve XOR

✦ An example of a two-layer perceptron that computes XOR

✦ Output is +1 if and only if x + y – 2Θ(x + y – 1.5) – 0.5 > 0
x y

(Here, inputs x, y are assumed to be 0 or 1)

19R. Rao, 528: Lecture 13

What if you want to approximate a
continuous function?

Can a network learn to drive?

20R. Rao, 528: Lecture 13

Example Network

Input u = (u1 u2 … u960) = image pixels

Get steering angle
from a human driver

Get current
camera image

Desired Output:
d = (d1 d2 … d30)

21R. Rao, 528: Lecture 13

Function Approximation

✦ We want networks that can learn a function
Network maps real-valued inputs to real-valued outputs
Want to generalize to predict outputs for new inputs
Idea: Given input data, minimize errors between
network’s output and desired output by adapting weights

22R. Rao, 528: Lecture 13

Sigmoidal Networks

Input nodes ae
ag β−+

=
1

1)(

a

Ψ(a)
1

The most common
activation function:

Sigmoid function:

(non-linear
“squashing” function)

g(a)

)(uwTg

u = (u1 u2 u3)T

w

Output

23R. Rao, 528: Lecture 13

Gradient-Descent Learning (“Hill-Climbing”)

✦ Given training examples (um,dm) (m = 1, …, N), define an
error function (cost function or “energy” function)

✦ Would like to change w so that E(w) is minimized
Gradient Descent: Change w in proportion to –dE/dw (why?)

2)(
2
1)(m

m

m vdE −= ∑w)(mTm gv uw=

mmTmm

m

m
mm

m
gvd

d
dvvd

d
dE

d
dE

uuw
ww

w
ww

)()()(′−−=−−=

−→

∑∑

ε

24R. Rao, 528: Lecture 13

“Stochastic” (or On-line) Gradient Descent

✦ What if the inputs only arrive one-by-one?

✦ Stochastic gradient descent approximates sum over all inputs
with an “on-line” running sum:

mmTmm gvd
d
dE

d
dE

uuw
w

w
ww

)()(1

1

′−−=

−→ ε
Also known as
the “delta rule”
or “LMS rule”

delta = error

25R. Rao, 528: Lecture 13

But wait….

✦ Delta rule tells us how to modify the connections from input
to output (one layer network)

One layer networks are not that interesting (remember XOR?)

✦ What if we have multiple layers?

How do we adapt these
“hidden” connections?

Input u = (u1 u2 … uK)T

Output v = (v1 v2 … vJ)T; Desired = d

26R. Rao, 528: Lecture 13

Let’s Backpropagate (Errors)

✦ Backpropagation = gradient-descent learning for multilayer
feedforward networks

✦ Idea: Propagate credit/blame for errors back to internal nodes
Use chain rule (from calculus) to change weights for
internal “hidden” nodes

Input u = (u1 u2 … uK)T

Output v = (v1 v2 … vJ)T
error = (d – v)

Delta rule

Backprop rule

Backpropagate
this to correct all

weights

27R. Rao, 528: Lecture 13

Notation for Backprop

))((m
k

k
jk

j
ij

m
i uwgWgv ∑∑=

2

,

2

)(
2
1

||||
2
1),(

m
i

im

m
i

m

m

m

vd

E

−=

−=

∑

∑ vdwWm
ku

m
jx

m
jx

Find W and w that minimize
total squared output error:

28R. Rao, 528: Lecture 13

Backpropagation (for Math lovers’ eyes only!)

✦ Learning rule for hidden-output connection weights:

✦ Backpropagation rule for input-hidden connection weights:

m
j

j

m
jij

m
i

m
i

mij

ij
ijij

xxWgvd
dW
dE

W
EWW

)()(∑∑ ′−−=

∂
∂−→ ε

m
k

m
k

k
jkij

j

m
jij

m
i

m
i

imjk

jk

m
j

m
jjkjk

jkjk

uuwgWxWgvd
dw
dE

w
x

x
E

w
E

w
Eww

)()()(

 :But

,
∑∑∑ ′⋅′−−=

∂
∂

⋅
∂
∂=

∂
∂

∂
∂−→ ε {chain rule}

Delta rule

29R. Rao, 528: Lecture 13

Learning to Drive using Backprop

One of the learned
“road features” wi

30R. Rao, 528: Lecture 13

ALVINN (Autonomous Land Vehicle in a Neural Network)

(Pomerleau, 1992)

Trained using human
driver + camera images

After learning:
Drove up to 70 mph on
highway
Up to 22 miles without
intervention
Drove cross-country
largely autonomously

31R. Rao, 528: Lecture 13

Next Class: Reinforcement Learning

✦ Things to do:
Read Chapter 9
Finish Last Homework (due Thu, May 24)
Work on mini-project

I’ll be bäck
(for reinf. learning)

