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CSE/NEUBEH 528
Lecture 12: Unsupervised Learning

(Chapters 8 & 10)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html
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Gameplan for Today

✦ Unsupervised (Representational) Learning
Hebb rule and Principal Component Analysis (PCA)
Causal Models
Generative versus Recognition Models
Density Estimation and EM
Sparse Coding & Independent Component Analysis (ICA)

(Copyright, Warner Brothers)
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Flashback: Hebb Rule

✦ Consider a linear neuron:

✦ Basic Hebb Rule: 

✦ Pure Hebb only increases synaptic weights (LTP)
What about LTD?

✦ Covariance rules:
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Are these learning rules stable?

On Board Analysis, leading up to Oja’s rule
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Variants of the Hebb Rule

✦ Pure Hebb

✦ Covariance rules:

✦ Oja’s Rule:
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Hebbian Learning in the Brain

LTP = Long Term Potentiation
LTD = Long Term Depression

(Similar to 
covariance rule)
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What does Hebbian Learning do?

✦ Consider a linear neuron:

✦ Basic Hebb Rule: 

✦ What is the average effect of this rule over many inputs?

✦ Q is the input correlation matrix:
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What does Hebbian Learning do?

Eigenvector analysis of Hebb rule…
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Hebb Rule implements PCA!

Pure Hebb Pure Hebb Covariance Rule
Input mean = (0,0) Input mean = (2,2)        Input mean = (2,2)

Hebb rule rotates weight vector to align with principal 
eigenvector of input correlation/covariance matrix (i.e. 

direction of maximum variance)

Weight 
vector w 

after 
learning
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What about this data?

?
What does the 

covariance rule learn?

Initial w
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PCA does not correctly describe the data

Input data is made up of two clusters (Gaussians) two “causes”
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Causal Models

✦ Main goal of unsupervised 
learning: Learn the “Causes”
underlying the input data

✦ Example: Learn the means and 
variances of the two Gaussians A 
and B that generated this data

✦ Want: Two neurons A and B that 
learn the means and variances 
based solely on input data (samples 
from distribution)

meanA

2σA
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Generative versus Recognition Models
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Parameters G = (µv, σv, γv)
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EM algorithm for Learning Data Clusters

✦ Stands for Expectation-Maximization algorithm

✦ Repeat the following two steps until convergence:
E step: Compute recognition distribution (v = A or B) for each u:

M step: Change parameters G using results from E step
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Results from the EM algorithm

Input data:

(µv, σv)
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Next Class: Supervised Learning

✦ Things to do:
Finish reading Chapters 8 and 10 
Do Homework #4 (last homework!)
Start mini-project

Have a great 
weekend!


