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Lecture 12: Unsupervised Learning
(Chapters 8 & 10)
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Gameplan for Today

0 Unsupervised (Representational) Learning
< Hebb rule and Principal Component Analysis (PCA)
< Causal Models
< Generative versus Recognition Models
< Density Estimation and EM
< Sparse Coding & Independent Component Analysis (ICA)
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Flashback: Hebb Rule

O Consider a linear neuron:
V= WTll = llTW

0 Basic Hebb Rule: T,

dw _
— =uv
4

0 Pure Hebb only increases synaptic weights (LTP)
< What about LTD?

O Covariance rules: r d_W:(u—e )v
Y dt !
aw
r,—=u(v-6
v (v=6)
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Are these learning rules stable?

On Board Analysis, leading up to Oja’s rule
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Variants of the Hebb Rule

O Pure Hebb dw _
I, — =uv
dt
0 Covariance rules: dw
r,—=(u-0,)
dt
dw

T —= -0
v u(v-0,)

, dw
0 Oja’s Rule: TWE:(U—GWV)V (stable, [[w[? - 1/a)
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Hebbian Learning in the Brain
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LTP = Long Term Potentiation
LTD = Long Term Depression
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What does Hebbian Learning do?

O Consider a linear neuron:
V= WTll = llTW

O Basic Hebb Rule: T,

dw _
— =uv
4

0 What is the average effect of this rule over many inputs?

r, ™ = fwy) = ow

dt

: : : . — T
0 Qs the input correlation matrix: Q = <llll >
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What does Hebbian Learning do?

Eigenvector analysis of Hebb rule...
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Hebb Rule implements PCA!

Pure Hebb Pure Hebb Covariance Rule
Input mean = (0,0) Input mean = (2,2) Input mean = (2,2)

Weight 2N

vectorw 2 7
after

learning

Hebb rule rotates weight vector to align with principal
eigenvector of input correlation/covariance matrix (i.e.
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What about this data?
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PCA does not correctly describe the data

2 2
X
)kxx
1 < 9 1
U2 ><><>< U9
% —
0 X % 0
X
‘11 0 1 2 ‘11
Ul

Ul

Input data is made up of two clusters (Gaussians) = two “causes”
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Causal Models

0 Main goal of unsupervised
learning: Learn the “Causes”
underlying the input data

0 Example: Learn the means and
variances of the two Gaussians A
and B that generated this data

0O Want: Two neurons A and B that
learn the means and variances
based solely on input data (samples
from distribution)
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Generative versus Recognition Models
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EM algorithm for Learning Data Clusters

0 Stands for Expectation-Maximization algorithm

0 Repeat the following two steps until convergence:
< E step: Compute recognition distribution (v = A or B) for each u:

pluviGlpviG] . NWp.0.DY,  gaveq rule)

plviwGl= =
plu;G] > N(uw u,,0,Ny,
@ M step: Change parameters G using results from E step
2. plv|wGlm
¥, =Y. plvIwGl/N,, e Y N e (Learn
u 2. Plv|wG] parameters)

2 plviwGllu-p,
U'vzz u G
2 Plv|wG] y
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Results from the EM algorithm
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Next Class: Supervised Learning

0 Things to do:
© Finish reading Chapters 8 and 10
< Do Homework #4 (last homework!)
< Start mini-project

Have a great
weekend!
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