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CSE/NB 528
Lecture 11: More on Networks

(Chapters 7 &  8)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html
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Gameplan for Today

✦ Wrap up of Nonlinear Recurrent Networks

✦ Plasticity and Learning
Types: Unsupervised, Supervised, and Reinforcement learning

✦ Unsupervised Learning
Hebb rule and its variants (Covariance, BCM, Oja rule)
Principal Component Analysis (PCA)
Temporally Asymmetric Hebbian learning

(Copyright, Warner Brothers)
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Associative Memories (Hopfield Networks)

✦ Fully connected, no feedforward inputs
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Idea: Store 
patterns as fixed 

points of this 
network

Question: Will I
always converge 
to a fixed point?

g = sigmoid function
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Enter…Lyapunov Functions

✦ Idea: If dI/dt causes some function L(I) to always decrease or 
remain constant (i.e. dL/dt ≤ 0) and L has a lower bound 
(with dL/dt = 0 only if dI/dt = 0), then dI/dt = 0 eventually

Network converges to a fixed point

✦ L also called “energy” function or “cost” function
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Lyapunov for Hopfield networks

✦ What is a good Lyapunov function L(I) for Hopfield nets?

✦ What constraints are required on the recurrent weights M?

6R. Rao, 528: Lecture 11

Lyapunov for Hopfield networks
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Since L is bounded from below and dL/dt = 0 only if dIi/dt = 0, 
L cannot decrease forever and dIi/dt = 0 eventually for all i

Take-home exercise!
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Example of Auto-Associative Memory

Partial inputs Converged output vector 
(fixed point)
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Pattern Completion in a Hopfield Network

Local minimum
(“attractor”) of cost 
(or “energy”) function
stores pattern

Network converges
from here

to here
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Pattern Recall in Hopfield Nets

time

Initial states Stable states
(fixed points)
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What about Non-Symmetric Recurrent Networks?

✦ Example: Network of Excitatory (E) and Inhibitory (I) 
Neurons

Connections can’t be symmetric: Why?
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Simple 2 neuron model for representing interacting populations
One excitatory neuron and one inhibitory neuron
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Stability Analysis of Nonlinear Recurrent Networks
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(see Mathematical Appendix A.3 in textbook)

Derive solution for v(t) based on eigen-analysis of J
Eigenvalues of J determine stability of network

J is the “Jacobian
matrix”
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Example: Non-Symmetric Recurrent Networks

✦ Specific Network of Excitatory (E) and Inhibitory (I) 
Neurons:
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Linear Stability Analysis

✦ Matrix of derivatives (the “Jacobian Matrix”):
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Compute the Eigenvalues

✦ Jacobian Matrix:

✦ Its two eigenvalues (obtained by solving det(J – λI) = 0):
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Different dynamics depending on real and imaginary parts of λ
(see pages 410-412 of Appendix in Text)



15R. Rao, 528: Lecture 11

Phase Plane and Eigenvalue Analysis
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Damped Oscillations in the Network 

τI = 30 ms (negative real eigenvalue)

Stable
Fixed
Point
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Unstable Behavior and Limit Cycle

τI = 50 ms (positive real eigenvalue)

Limit
cycle
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So far, we have been analyzing networks with 
fixed sets of synaptic weights W and M

Can these be adapted in response to inputs?
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Plasticity and Learning: Adapting the Connections

✦ Question 1: How do we adapt the synaptic weights W and M 
to solve useful tasks? 

✦ Question 2: How does the brain do it?
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Synaptic Plasticity in the Brain

LTP = Long Term Potentiation
LTD = Long Term Depression
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Other Forms of Plasticity in the Brain

✦ Short-Term Synaptic Plasticity
Short-term depression/facilitation
Dynamics may change on a long-term 
basis via LTP/LTD

✦ Changes to intrinsic excitability of cell
Density and distribution of various 
channels (ionic conductances)
Not well-studied

✦ Growth and morphological changes in 
dendrites

Not well-studied

✦ Addition of new neurons?
Hot topic of research these days…

Short-term 
depression

22R. Rao, 528: Lecture 11

The Theory: Classification of Learning Algorithms

✦ Unsupervised Learning
Synapses adapted based solely on inputs
Network self-organizes in response to statistical patterns in input
Similar to Probability Density Estimation in statistics

✦ Supervised Learning
Synapses adapted based on inputs and desired outputs
External “teacher” provides desired output for each input
Goal: Function approximation

✦ Reinforcement Learning
Synapses adapted based on inputs and (delayed) 
reward/punishment
Goal: Pick outputs that maximize total expected future reward
Similar to optimization based on Markov decision processes
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Let’s start with Unsupervised Learning

Consider a single neuron receiving feedforward 
inputs from other neurons (e.g. from the retina)
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The Grand-Daddy of Unsupervised Learning

✦ Rule hypothesized by Donald Hebb in 1949

✦ Hebb’s learning rule:

“If neuron A frequently contributes to the firing of 
neuron B, then the synapse from A to B should 

be strengthened”

✦ Related Mantra: Neurons that fire together wire 
together

✦ Hebb’s goal: Produce clusters of neurons (“cell 
assemblies”) that fire together in response to a 
stimulus
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Formalizing Hebb’s Rule

✦ Consider a linear neuron:

✦ Basic Hebb Rule: 

✦ What is the average effect of this 
rule?

✦ Q is the input correlation matrix:
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Variants of Hebb’s Rule

✦ Pure Hebb only increases synaptic weights (LTP)
What about LTD?

✦ Covariance rules:

✦ BCM rule:
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(But: LTD also for no input 
and some output)

(But: LTD also for no output 
and some input)
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Next Class: Unsupervised Learning

✦ Things to do:
Finish Chapter 8 and Start Chapter 10 
Watch for the Last Homework (due May 24)
Start mini-project

Hebb
rules!


