



















General case : $\frac{d\mathbf{v}}{dt} = \mathbf{f}(\mathbf{v})$ Suppose \mathbf{v}_{∞} is a fixed point (i.e., $\mathbf{f}(\mathbf{v}_{\infty}) = 0$) Near \mathbf{v}_{∞} , $\mathbf{v}(t) = \mathbf{v}_{\infty} + \boldsymbol{\varepsilon}(t)$ (i.e., $\frac{d\mathbf{v}}{dt} = \frac{d\boldsymbol{\varepsilon}}{dt}$) Taylor expansion : $\mathbf{f}(\mathbf{v}(t)) = \mathbf{f}(\mathbf{v}_{\infty}) + \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\Big|_{\mathbf{v}_{\infty}} \boldsymbol{\varepsilon}(t)$ *i.e.* $\frac{d\mathbf{v}}{dt} = \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\Big|_{\mathbf{v}_{\infty}} \boldsymbol{\varepsilon}(t) = J \cdot \boldsymbol{\varepsilon}(t) = \frac{d\boldsymbol{\varepsilon}}{dt}$ J is the "Jacobian matrix" Derive solution for $\mathbf{v}(t)$ based on eigen-analysis of J Eigenvalues of J determine stability of network R. Rao, 528: Lecture 11 (see Mathematical Appendix A.3 in textbook) 11































