
What an a single neuron ompute?Blaise Ag�uera y Aras,1 Adrienne L. Fairhall,2 and William Bialek21Rare Books Library, Prineton University, Prineton, New Jersey 085442NEC Researh Institute, 4 Independene Way, Prineton, New Jersey 08540blaisea�prineton.edu fadrienne,bialekg�researh.nj.ne.omAbstratIn this paper we formulate a desription of the omputation per-formed by a neuron as a ombination of dimensional redutionand nonlinearity. We implement this desription for the Hodgkin-Huxley model, identify the most relevant dimensions and �nd thenonlinearity. A two dimensional desription already aptures asigni�ant fration of the information that spikes arry about dy-nami inputs. This desription also shows that omputation in theHodgkin-Huxley model is more omplex than a simple integrate-and-�re or pereptron model.1 IntrodutionClassial neural network models approximate neurons as devies that sum theirinputs and generate a nonzero output if the sum exeeds a threshold. From oururrent state of knowledge in neurobiology it is easy to ritiize these models as over-simpli�ed: where is the omplex geometry of neurons, or the many di�erent kindsof ion hannel, eah with its own intriate multistate kinetis? Indeed, progress atthis more mirosopi level of desription has led us to the point where we an write(almost) exat models for the eletrial dynamis of neurons, at least on short timesales. These nearly exat models are ompliated by any measure, inluding tensif not hundreds of di�erential equations to desribe the states of di�erent hannelsin di�erent spatial ompartments of the ell. Faed with this detailed mirosopidesription, we need to answer a question whih goes well beyond the biologialontext: given a ontinuous dynamial system, what does it ompute?Our goal in this paper is to make this question about what a neuron omputes some-what more preise, and then to explore what we take to be the simplest example,namely the Hodgkin{Huxley model [1℄,[2℄ (and refs therein).2 What do we mean by the question?Real neurons take as inputs signals at their synapses and give as outputs sequenesof disrete, idential pulses|ation potentials or `spikes'. The inputs themselvesare spikes from other neurons, so the neuron is a devie whih takes N � 103 pulsetrains as inputs and generates one pulse train as output. If the system operates at 2mse resolution and the window of relevant inputs is 20 mse, then we an think ofa single neuron as having an input desribed by a � �104 bit word|the preseneor absene of a spike in eah 2 mse bin for eah presynapti ell|whih is thenmapped to a one (spike) or zero (no spike). More realistially, if the average spike



rates are � 10 se�1, the input words an be ompressed by a fator of ten. Thus wemight be able to think about neurons as evaluating a Boolean funtion of roughly1000 Boolean variables, and then haraterizing the omputational funtion of theell amounts to speifying this Boolean funtion.The above estimate, though rude, makes lear that there will be no diret empirialattak on the question of what a neuron omputes: there are too many possibilitiesto learn the funtion by brute fore from any reasonable set of experiments. Progressrequires the hypothesis that the funtion omputed by a neuron is not arbitrary, butbelongs to a simple lass. Our suggestion is that this simple lass involves funtionsthat vary only over a low dimensional subspae of the inputs, and in fat we willstart by searhing for linear subspaes.Spei�ally, we begin by simplifying away the spatial struture of neurons and takeinputs to be just injeted urrents into a point{like neuron. While this misses someof the rihness in real ells, it allows us to fous on developing our omputationalmethods. Further, it turns out that even this simple problem is not at all trivial. Ifthe input is an injeted urrent, then the neuron maps the history of this urrent,I(t < t0), into the presene or absene of a spike at time t0. More generally we mightimagine that the ell (or our desription) is noisy, so that there is a probability ofspiking P [spike�t0jI(t < t0)℄ whih depends on the urrent history. We emphasizethat the dependene on the history of the urrent means that there still are manydimensions to the input signal even though we have ollapsed any spatial variations.If we work at time resolution �t and assume that urrents in a window of size Tare relevant to the deision to spike, then the inputs live in a spae of D = T=�t,of order 100 dimensions in many interesting ases.If the neuron is sensitive only to a low dimensional linear subspae, we an de�nea set of signals s1; s2; � � � ; sK by �ltering the urrent,s� = Z 10 dtf�(t)I(t0 � t); (1)so that the probability of spiking depends only on this �nite set of signals,P [spike�t0jI(t < t0)℄ = P [spike�t0℄g(s1; s2; � � � ; sK); (2)where we inlude the average probability of spiking so that g is dimensionless. If wethink of the urrent I(t < t0) as a vetor, with one dimension for eah time sample,then these �ltered signals are linear projetions of this vetor.In this formulation, haraterizing the omputation done by a neuron means esti-mating the number of relevant stimulus dimensions (K, hopefully muh less thanD), identifying the �lters whih projet into this relevant subspae,1 and then har-aterizing the nonlinear funtion g(~s). The lassial pereptron{like ell of neuralnetwork theory has only one relevant dimension and a simple form for g.3 Identifying low{dimensional strutureThe idea that neurons might be sensitive only to low{dimensional projetions oftheir inputs was developed expliitly in work on a motion sensitive neuron of they visual system [3℄. Rather than looking at the distribution P [spike�t0js(t < t0)℄,with s(t) the input signal (veloity of motion aross the visual �eld in [3℄), thatwork onsidered the distribution of signals onditional on the response, P [s(t <t0)jspike�t0℄; these are related by Bayes' rule,P [spike�t0js(t < t0)℄P [spike�t0℄ = P [s(t < t0)jspike�t0℄P [s(t < t0)℄ : (3)1Note that the individual �lters don't really have any meaning; what is meaningful isthe projetion operator that is formed by the whole set of these �lters. Put another way,the individual �lters speify both a K{dimensional subspae and a oordinate system onthis subspae, but there is no reason to prefer one oordinate system over another.



Within the response onditional ensemble P [s(t < t0)jspike�t0℄ we an omputevarious moments. Thus the spike triggered average stimulus, or reverse orrelationfuntion [4℄, is the �rst momentSTA(�) = Z [ds℄P [s(t < t0)jspike�t0℄s(t0 � �) : (4)We an also ompute the ovariane matrix of utuations around this average,Cspike(�; � 0) = Z [ds℄P [s(t < t0)jspike�t0℄s(t0��)s(t0�� 0)�STA(�)STA(� 0): (5)In the same way that we ompare the spike triggered average to some onstantaverage level of the signal (whih we an de�ne to be zero) in the whole experiment,we want to ompare the ovariane matrix Cspike with the ovariane of the signalaveraged over the whole experiment,Cprior(�; � 0) = Z [ds℄P [s(t < t0)℄s(t0 � �)s(t0 � � 0): (6)Notie that all of these ovariane matries are D�D in size. The surprising �nd-ing of [3℄ was that the hange in the ovariane matrix, �C = Cspike � Cprior, hadonly a very small number of nonzero eigenvalues. In fat it an be shown that ifthe probability of spiking depends on K linear projetions of the stimulus as in eq.(2), and if the inputs s(t) are hosen from a Gaussian distribution, then the rankof the matrix �C is exatly K. Further, the eigenvetors assoiated with nonzeroeigenvalues span the relevant subspae (up to a rotation assoiated with the auto-orrelations in the inputs. Thus eigenvalue analysis of the spike triggered ovarianematrix gives us a diret way to searh for a low dimensional linear subspae thataptures the relevant stimulus features.4 The Hodgkin{Huxley modelWe reall the details of the Hodgkin{Huxley model and note some speial featuresthat guide our analysis. Hodgkin and Huxley [1℄ modeled the dynamis of theurrent through a path of membrane by ow through ion{spei� ondutanes:I(t) = C dVdt + �gKn4 (V � VK) + �gNam3h (V � VNa) + �gl (V � Vl) ; (7)where K and Na subsripts denote potassium{ and sodium{related variables, re-spetively, and l (for `leakage') terms are a ath-all for other ion speies with slowerdynamis. C is the membrane apaitane. The subsripted voltages Vl and VNaare ion-spei� reversal potentials. �gl, �gK and �gNa are empirially determined max-imal ondutanes for the di�erent ions,2 and the gating variables n, m and h (onthe interval [0; 1℄) have their own voltage dependent dynamis:dn=dt = (0:01V + 0:1)(1� n) exp(�0:1V )� 0:125n exp(V=80)dm=dt = (0:1V + 2:5)(1�m) exp(�0:1V � 1:5)� 4m exp(V=18)dh=dt = 0:07(1� h) exp(0:05V )� h exp(�0:1V � 4); (8)with V in mV and t in mse.Here we are interested in dynami inputs I(t), but it is important to rememberthat for onstant inputs the Hodgkin{Huxley model undergoes a Hopf bifurationto spike at a onstant frequeny; further, this frequeny is rather insensitive to thepreise value of the input above onset. This `rigidity' of the system is felt also in2We have used the original parameters, with a sign hange for voltages: C = 1�F=m2,�gK = 36mf=m2, �gNa = 120mf=m2, �gl = 0:3mf=m2, VK = �12mV, VNa = +115mV,Vl = +10:613mV. We have taken our system to be a � � 302�m2 path of membrane.



many regimes of dynami stimulation, and an be thought of as a strong interationamong suessive spikes. These interations lead to long memory times, reetingthe in�nite phase memory of the periodi orbit whih exists for onstant input.While spike interations are interesting, we want to fous on the way that inputurrent modulates the probability of spiking. To separate these e�ets we onsideronly `isolated' spikes. These are de�ned by aumulating the interspike intervaldistribution and notiing that for some intervals t > t the distribution deaysexponentially, whih means that the system has lost memory of the previous spike;thus spikes whih are more than t after the previous spike are isolated.In what follows we onsider the response of the Hodgkin{Huxley model to urrentsI(t) with zero mean, 0.275 nA standard deviation, and 0.5 mse orrelation time.5 How many dimensions?Fig. 1 shows the hange in ovariane matrix �C(�; � 0) for isolated spikes in our HHsimulation, and �g. 2(a) shows the resulting spetrum of eigenvalues as a funtionof sample size. The result strongly suggests that there are many fewer than Drelevant dimensions. In partiular, there seem to be two outstanding modes; theSTA itself lies largely in the subspae of these modes, as shown in Fig. 2(b).
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Figure 2: (a) Convergene of the largest 32 eigenvalues of the isolated spike triggeredovariane with inreasing sample size. (b) Projetions of the isolated STA ontothe ovariane modes.
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Figure 3: Most signi�ant two modes of the spike-triggered ovariane.missing in this piture. To quantify this, we must �rst haraterize the nonlinearfuntion g(s1; s2).6 Nonlinearity and informationAt eah instant of time we an �nd the relevant projetions of the stimulus s1 ands2. By onstrution, the distribution of these signals over the whole experiment,P (s1; s2), is Gaussian. On the other hand, eah time we see a spike we get a samplefrom the distribution P (s1; s2jspike�t0), leading to the piture in �g. 4. The priorand spike onditional distributions learly are better separated in two dimensionsthan in one, whih means that our two dimensional desription aptures more thanthe spike triggered average. Further, we see that the spike onditional distributionis urved, unlike what we would expet for a simple thresholding devie.Combining eq's. (2) and (3), we haveg(s1; s2) = P (s1; s2jspike�t0)P (s1; s2) ; (9)so that these two distributions determine the input/output relation of the neuronin this 2D spae. We emphasize that although the subspae is linear, g an havearbitrary nonlinearity. Fig. 4 shows that this input/output relation has sharpedges, but also some fuzziness. The HH model is deterministi, so in priniple theinput/output relation should be a Æ funtion: spikes our only when ertain exatonditions are met. Of ourse we have blurred things a bit by working at �nite time
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