### **CSE 527**

# Markov Models and Hidden Markov Models



http://upload.wikimedia.org/wikipedia/commons/b/ba/Calico\_cat

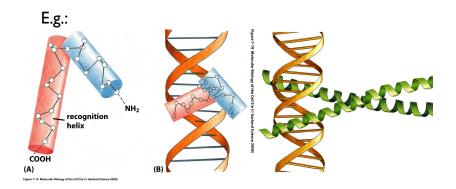
# Dosage Compensation and X-Inactivation

2 copies (mom/dad) of each chromosome I-23
Mostly, both copies of each gene are expressed
E.g., A B O blood group defined by 2 alleles of I gene
Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:

- One X randomly inactivated in each cell | How?
- Choice maintained in daughter cells

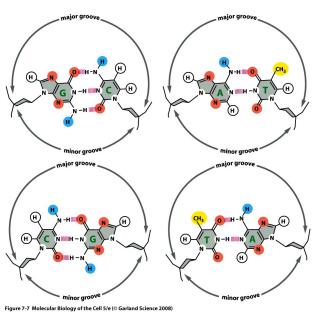
Calico: major coat color gene is on X

### Reminder: Proteins "Read" DNA



# Down in the Groove

Different patterns of hydrophobic methyls, potential H bonds, etc. at edges of different base pairs. They're accessible, esp. in major groove



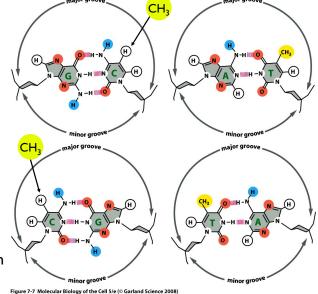
### **DNA Methylation**

CpG - 2 adjacent nts, same strand (not Watson-Crick pair; "p" mnemonic for the phosphodiester bond of the DNA backbone)

C of CpG is often (70-80%) methylated in mammals i.e., CH<sub>3</sub> group added (both strands)

## Same Pairing

Methyl-C alters major groove profile (:. TF binding), but not basepairing, transcription or replication



## **DNA Methylation–Why**

In vertebrates, it generally silences transcription

(Epigenetics) X-inactivation, imprinting, repression of mobile elements, cancers, aging, and developmental differentiation



E.g., if a stem cell divides, one daughter fated to be liver, other kidney, need to

- (a) turn off liver genes in kidney & vice versa,
- (b) remember that through subsequent divisions

### How?

- (a) Methylate genes, esp. promoters, to silence them
- (b) after ÷, DNA methyltransferases convert hemi- to fully-methylated (& deletion of methyltransferse is embrionic-lethal in mice)

Major exception: promoters of housekeeping genes

### "CpG Islands"

Methyl-C mutates to T relatively easily

Net: CpG is less common than expected genome-wide: f(CpG) < f(C)\*f(G)

BUT in some regions (e.g. active promoters), CpG remain unmethylated, so CpG → TpG less likely there: makes "CpG Islands"; often mark gene-rich regions

### CpG Islands

### CpG Islands

More CpG than elsewhere (say, CpG/GpC>50%) More C & G than elsewhere, too (say, C+G>50%) Typical length: few 100 to few 1000 bp

### **Ouestions**

Is a short sequence (say, 200 bp) a CpG island or not? Given long sequence (say, 10-100kb), find CpG islands?

# Markov & Hidden Markov Models

References (see also online reading page): Eddy, "What is a hidden Markov model?" Nature Biotechnology, 22, #10 (2004) 1315-6.

Durbin, Eddy, Krogh and Mitchison, "Biological Sequence Analysis", Cambridge, 1998 (esp. chs 3, 5)

Rabiner, "A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition," Proceedings of the IEEE, v 77 #2,Feb 1989, 257-286

### Independence

A key issue: Previous models we've talked about assume *independence* of nucleotides in different positions - definitely unrealistic.

### Markov Chains

A sequence  $x_1, x_2, \ldots$  of random variables is a k-th order Markov chain if, for all i, i<sup>th</sup> value is independent of all but the previous k values:

$$P(x_i \mid x_1, x_2, \dots, x_{i-1}) = P(x_i \mid x_{i-k}, x_{i-k+1}, \dots, x_{i-1})$$

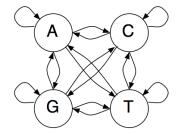
Example 1: Uniform random ACGT

Example 2: Weight matrix model

Example 3: ACGT, but \( \psi \) Pr(G following C)

Ist

### A Markov Model (1st order)

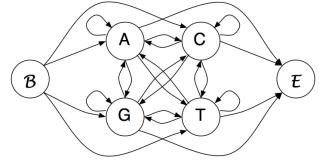


States: A,C,G,T

Emissions: corresponding letter

Transitions:  $a_{st} = P(x_i = t \mid x_{i-1} = s)$   $\leftarrow$  Ist order

### A Markov Model (1st order)



States: A,C,G,T

Emissions: corresponding letter Transitions:  $a_{st} = P(x_i = t \mid x_{i-1} = s)$ 

Begin/End states

### Pr of emitting sequence x

$$x = x_1 x_2 \dots x_n$$
 $P(x) = P(x_1, x_2, \dots, x_n) > x_n$ 
 $= P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}, \dots, x_1)$ 
 $= P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1})$ 
 $= P(x_1) \prod_{i=1}^{n-1} a_{x_i, x_{i+1}}$ 
 $= \prod_{i=0}^{n-1} a_{x_i, x_{i+1}}$  (with Begin state)

### **Training**

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences

E.g., from 48 CpG islands in 60k bp:

| + | A     | C     | G     | T     | - | A     | C      | G     | T       |
|---|-------|-------|-------|-------|---|-------|--------|-------|---------|
| A | 0.180 | 0.274 | 0.426 | 0.120 | A | 0.300 | 0.205  | 0.285 | 0.210   |
| C | 0.171 | 0.368 | 0.274 | 0.188 | C | 0.322 | 0.298% | 0.078 | 0.302   |
| G | 0.161 | 0.339 | 0.375 | 0.125 | G | 0.248 | 0.246  | 0.298 | 0.208   |
| Т | 0.079 | 0.355 | 0.384 | 0.182 | T | 0.177 | 0.239  | 0.292 | 0.292   |
|   |       |       |       |       |   |       |        | Fr    | om DEKM |

### Discrimination/Classification

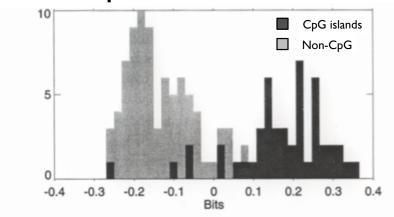
Log likelihood ratio of CpG model vs background model

$$S(x) = \log \frac{P(x|\text{model } +)}{P(x|\text{model } -)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1}^{L} \beta_{x_{i-1}x_i}$$

| β | A      | С     | G     | T      |
|---|--------|-------|-------|--------|
| A | -0.740 | 0.419 | 0.580 | -0.803 |
| C | -0.913 | 0.302 | 1.812 | -0.685 |
| G | -0.624 | 0.461 | 0.331 | -0.730 |
| T | -1.169 | 0.573 | 0.393 | -0.679 |

From DEKM

### CpG Island Scores



**Figure 3.2** Histogram of length-normalized scores.

What does a 2nd order Markov Model look like?

3rd order?

From DEKM

### Questions

Q1: Given a *short* sequence, is it more likely from feature model or background model? Above

Q2: Given a *long* sequence, where are the features in it (if any)

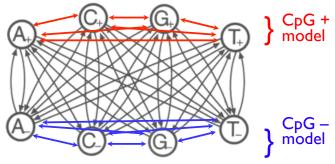
Approach I: score 100 bp (e.g.) windows

Pro: simple

Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.

**Combined Model** 



Emphasis is "Which (hidden) state?" not "Which model?"

### Hidden Markov Models

(HMMs; Claude Shannon, 1948)

States:  $1, 2, 3, \ldots$ 

Paths: sequences of states  $\pi = (\pi_1, \pi_2, ...)$ 

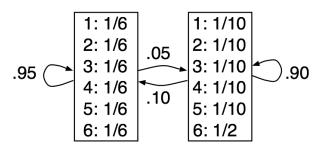
Transitions:  $a_{k,l} = P(\pi_i = l \mid \pi_{i-1} = k)$ Emissions:  $e_k(b) = P(x_i = b \mid \pi_i = k)$ 

Observed data: emission sequence

Hidden data: state/transition sequence

# The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped



| Rolls<br>Die<br>Viterbi | 315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF              |
|-------------------------|-------------------------------------------------------------------------------------------------------|
| Rolls<br>Die<br>Viterbi | 651166453132651245636664631636663162326455236266666625151631<br>LLLLLLFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLL |
| Rolls<br>Die<br>Viterbi | $222555441666566563564324364131513465146353411126414626253356\\ FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$ |
| Rolls<br>Die<br>Viterbi | 36616366466232534413661661163252562462255265252266435353336<br>LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFF    |
| Rolls<br>Die<br>Viterbi | 233121625364414432335163243633665562466662632666612355245242<br>FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF       |

### Figure 3.5

Rolls: Visible data—300 rolls of a die as described above. Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM

# The Viterbi Algorithm: The most probable path

Viterbi finds:  $\pi^* = \arg \max_{\pi} P(x, \pi)$ 

Possibly there are 1099 paths of prob 10-99

More commonly, one path (+ slight variants) dominate others.

(If not, other approaches may be preferable.)

Key problem: exponentially many paths  $\pi$ 

### Inferring hidden stuff

Joint probability of a given path  $\pi$  & emission sequence x:

$$P(x,\pi) = a_{0,\pi_1} \prod_{i=1}^{n} e_{\pi_i}(x_i) \cdot a_{\pi_i,\pi_{i+1}}$$

But  $\pi$  is hidden; what to do? Some alternatives:

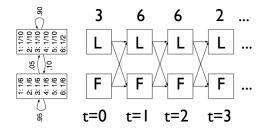
Most probable single path

$$\pi^* = \arg\max_{\pi} P(x, \pi)$$

Sequence of most probable states

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

## Unrolling an HMM



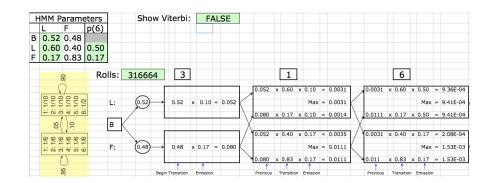
Conceptually, sometimes convenient Note exponentially many paths

### Viterbi

 $v_l(i) = ext{probability of the most probable path}$ emitting  $x_1, x_2, \dots, x_i$  and ending in state l

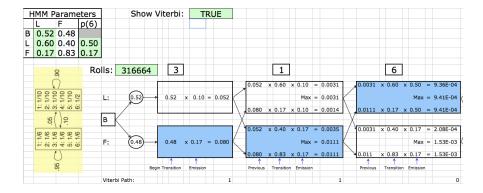
Initialize:

### **HMM Casino Example**



(Excel spreadsheet on web; download & play...)

### **HMM Casino Example**



(Excel spreadsheet on web; download & play...)

### Viterbi Traceback

Above finds *probability* of best path

To find the path itself, trace *backward* to the state *k* attaining the max at each stage

$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) a_{k,l})$$

| Rolls<br>Die<br>Viterbi | 315116246446644245311321631164152133625144543631656626566666666666666666666666666666                  |
|-------------------------|-------------------------------------------------------------------------------------------------------|
| Rolls<br>Die<br>Viterbi | 651166453132651245636664631636663162326455236266666625151631 LLLLLLFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLL    |
| Rolls<br>Die<br>Viterbi | $222555441666566563564324364131513465146353411126414626253356\\ FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$ |
| Rolls<br>Die<br>Viterbi | $36616366466232534413661661163252562462255265252266435353336\\ LLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFF$ |
| Rolls<br>Die<br>Viterbi | $233121625364414432335163243633665562466662632666612355245242\\ FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$ |

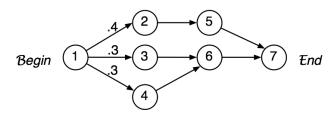
### Figure 3.5

Rolls: Visible data—300 rolls of a die as described above. Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

From DEKM

### Is Viterbi "best"?

Viterbi finds  $\pi^* = \arg\max_{\pi} P(x,\pi)$ 



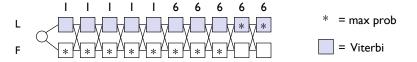
Most probable (Viterbi) path goes through 5, but most probable state at 2nd step is 6 (I.e., Viterbi is not the only interesting answer.)

# Most probable path ≠ Sequence of most probable states

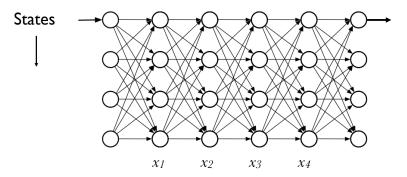
Another example, based on casino dice again

Suppose p(fair↔loaded) transitions are 10<sup>-99</sup> and

roll sequence is IIIII...66666; then fair state is more likely all through I's & well into the run of 6's, but eventually loaded wins, and the improbable  $F \rightarrow L$  transitions make Viterbi = all L.

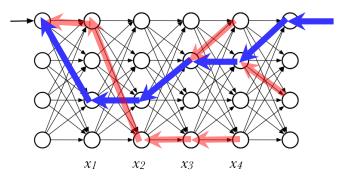


## An HMM (unrolled)



Emissions/sequence positions ——

### Viterbi: best path to each state



Viterbi score:

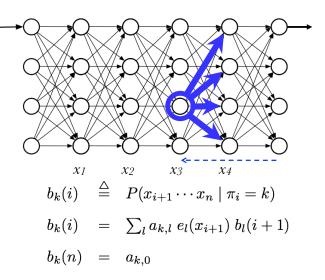
$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_{k} (v_k(i) a_{k,l})$$

Viterbi path<sup>R</sup>:

$$back_l(i+1) = \arg\max_{k} (v_k(i) a_{k,l})$$

## The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with given emissions, conditional on that state.



### The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with given emissions  $f_k(i) \stackrel{\triangle}{=} P(x_1 \dots x_i, \ \pi_i = k)$   $f_l(i+1) = e_l(x_{i+1}) \sum_k f_k(i) a_{k,l}$   $P(x) = \sum_{x} P(x, \pi) = \sum_k f_k(n) a_{k,0}$ 

## In state k at step i?

$$P(x, \pi_i = k)$$

$$= P(x_1, \dots, x_i, \pi_i = k) \cdot P(x_{i+1}, \dots, x_n \mid x_1, \dots, x_i, \pi_i = k)$$

$$= P(x_1, \dots, x_i, \pi_i = k) \cdot P(x_{i+1}, \dots, x_n \mid \pi_i = k)$$

$$= f_k(i) \cdot b_k(i)$$

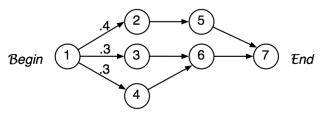
$$P(\pi_i = k \mid x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

### Posterior Decoding, I

Alternative 1: what's the most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Note: the sequence of most likely states ≠ the most likely sequence of states. May not even be legal!



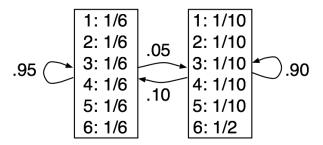
| Rolls<br>Die<br>Viterbi | 315116246446644245311321631164152133625144543631656626566666<br>FFFFFFFFFFFFFFFFFFFFFFFFFFF           |
|-------------------------|-------------------------------------------------------------------------------------------------------|
| Rolls<br>Die<br>Viterbi | 651166453132651245636664631636663162326455236266666625151631<br>LLLLLLFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLL |
| Rolls<br>Die<br>Viterbi | 222555441666566563564324364131513465146353411126414626253356 FFFFFFFFLLLLLLLLLLLLFFFFFFFFFFFFFFFFF    |
| Rolls<br>Die<br>Viterbi | 366163666466232534413661661163252562462255265252266435353336<br>LLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFF   |
| Rolls<br>Die<br>Viterbi | 233121625364414432335163243633665562466662632666612355245242<br>FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF       |

### Figure 3.5

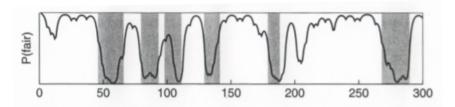
Rolls: Visible data—300 rolls of a die as described above. Die: Hidden data—which die was actually used for that roll (F = fair, L = loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

# The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped



### Posterior Decoding



**Figure 3.6** The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

From DEKM From DEKM

### Posterior Decoding, II

Alternative 1: what's most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Alternative 2: given some function g(k) on states, what's its expectation. E.g., what's probability of "+" model in CpG HMM (g(k)=1) iff k is "+" state)?

$$G(i \mid x) = \sum_{k} P(\pi_i = k \mid x) \cdot g(k)$$

### **Training**

Given model topology & training sequences, learn transition and emission probabilities

If  $\pi$  known, then MLE is just frequency observed in training data

$$a_{k,l} = \frac{\text{count of } k o l \text{ transitions}}{\text{count of } k o \text{ anywhere transitions}}$$
  $e_k(b) = \dots$ 

If  $\pi$  hidden, then use EM: given  $\pi$ , estimate  $\theta$ ; given  $\theta$  estimate  $\pi$ .

2 ways

### CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48 CpG islands of about 1kbp each

Viterbi: Post-process:

Found 46 of 48 46/48

plus 121 "false positives" 67 false pos

Posterior Decoding:

same 2 false negatives 46/48

plus 236 false positives 83 false pos

Post-process: merge within 500; discard < 500

### Viterbi Training

given  $\pi$ , estimate  $\theta$ ; given  $\theta$  estimate  $\pi$ 

Make initial estimates of parameters  $\theta$  Find Viterbi path  $\pi$  for each training sequence Count transitions/emissions on those paths, getting new  $\theta$  Repeat

Not rigorously optimizing desired likelihood, but still useful & commonly used.

(Arguably good if you're doing Viterbi decoding.)

### Baum-Welch Training

EM: given  $\theta$ , estimate  $\pi$  ensemble; then re-estimate  $\theta$ 

$$P(\pi_{i} = k, \, \pi_{i+1} = l \mid x, \theta)$$

$$= \frac{f_{k}(i \mid \theta) \, a_{k,l} \, e_{l}(x_{i+1}) \, b_{l}(i+1 \mid \theta)}{P(x \mid \theta)}$$

Estimated # of k o l transitions  $\hat{A}_{k,l}$ 

$$= \sum_{\mathsf{training seqs } x^j} \sum_i P(\pi_i = k, \, \pi_{i+1} = l \mid x^j, \theta)$$
 New estimate  $\hat{a}_{k,l} = \frac{\hat{A}_{k,l}}{\sum_l \hat{A}_{k,l}}$ 

Emissions: similar

### HMMs in Action: Pfam

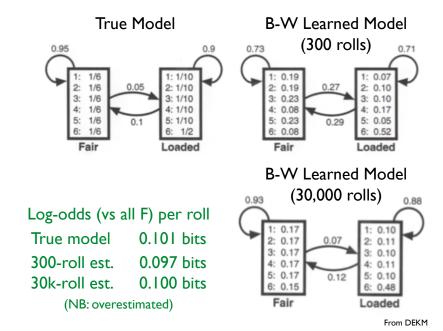
http://pfam.sanger.ac.uk/

Proteins fall into families, both across & within species

Ex: Globins, GPCRs, Zinc fingers, Leucine zippers,...

Identifying family very useful: suggests function, etc.

So, search & alignment are both important
One very successful approach: profile HMMs



Helix HBA\_HUMAN -----VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF HBB\_HUMAN -----VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTQRFFESF MYG\_PHYCA -----VLSEGEWQLVLHVWAKVEA--DVAGHGODILIRLFKSHPETLEKFDRF GLB3\_CHITP -----LSADQISTVQASFDKVKG-----DPVGILYAVFKADPSIMAKFTOF GLB5\_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAOEFFPKF LGB2\_LUPLU -----GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F GLB1\_GLYDI -----GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F Consensus Ls.... va W kv. Helix DDDDDDDEEEEEEEEEEEEEEE HBA\_HUMAN -DLS----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL-HBB\_HUMAN GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-MYG\_PHYCA KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-GLB3\_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-GLB5\_PETMA KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-LGB2\_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-GLB1\_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN Consensus .. . v..Hg kv. a a...l d Helix FFGGGGGGGGGGGGGG ннинининининининининини HBA\_HUMAN -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR---HBB HUMAN -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH------KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG MYG\_PHYCA GLB3 CHITP --VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM-----

Alignment of 7 globins. A-H mark 8 alpha helices. Consensus line: upper case = 6/7, lower = 4/7, dot=3/7. Could we have a profile (aka weight matrix) w/ indels?

GLB5\_PETMA -QVDPQYFKVLAAVIADTVAAG------DAGFEKLMSMICILLRSAY------LGB2\_LUPLU --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---

GLB1\_GLYDI KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLOS--

f 1 . .. ....

### **Profile Hmm Structure**

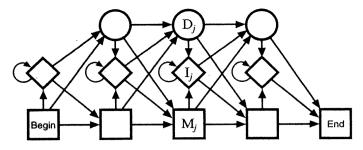


Figure 5.2 The transition structure of a profile HMM.

M<sub>j</sub>: Match states (20 emission probabilities)

lj: Insert states (Background emission probabilities)

Dj: Delete states (silent - no emission)

From DEKM

### Silent States

Example: chain of states, can skip some

Problem: many parameters.

A solution: chain of "silent" states; fewer parameters (but less detailed control)

Algorithms: basically the same.

## Using Profile HMM's

### Search

Forward or Viterbi

Scoring

Log likelihood (length adjusted)

Log odds vs background

Z scores from either

next slides

### Alignment

Viterbi

### Likelihood vs Odds Scores

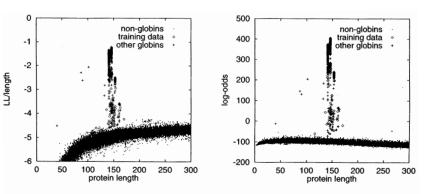


Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.

### **Z-Scores**

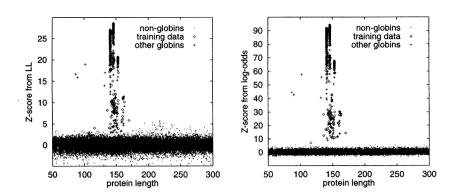


Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

From DEKM

# Model-building refinements

Pseudocounts (count = 0 common when training with 20 aa's)

$$e_i(a)=rac{C_{i,a}+A\cdot q_a}{\sum_a C_{i,a}+A},~~A\sim 20,~q_a=~$$
 background (~50 training sequences)

Pseudocount "mixtures", e.g. separate pseudocount vectors for various contexts (hydrophobic regions, buried regions,...)

(~10-20 training sequences)

### Pfam Model Building

Hand-curated "seed" multiple alignments
Train profile HMM from seed alignment
Hand-chosen score threshold(s)
Automatic classification/alignment of all other protein sequences
11912 families in Rfam 24.0, 10/200
(covers ~75% of proteins)

### More refinements

Weighting: may need to down weight highly similar sequences to reflect phylogenetic or sampling biases, etc.

Match/insert assignment: Simple threshold, e.g. "> 50% gap ⇒ insert", may be suboptimal.

Can use forward-algorithm-like dynamic programming to compute max a posteriori assignment.

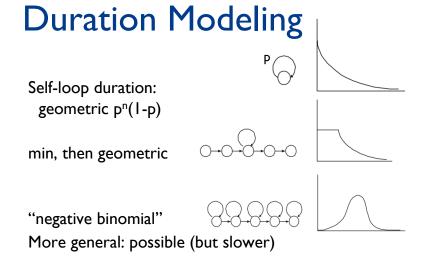
### Numerical Issues

Products of many probabilities → 0
For Viterbi: just add logs
For forward/backward: also work with logs, but you need sums of products, so need "log-of-sum-of-product-of-exp-of-logs", e.g., by table/interpolation
Keep high precision and perhaps scale factor
Working with log-odds also helps.

### Model structure

Define it as well as you can.

In principle, you can allow all transitions and hope to learn their probabilities from data, but it usually works poorly – too many local optima



### **HMM Summary**

(max of products)

(sum of products)

joint vs onditional probs Inference

Viterbi – best single path

Forward – sum over all paths

Backward – similar

Posterior decoding

Model building

Semi-supervised – typically fix architecture (e.g. profile HMM), then learn parameters

Baum-Welch – training via EM and forward/backward (aka the forward/backward algorithm)

Viterbi training - also "EM", but Viterbi-based

# HMM Summary (cont.)

```
Search:
Viterbi or forward

Scoring:
Odds ratio to background
Z-score
E-values, etc., too

Excellent tools available (SAM, HMMer, Pfam, ...)

A very widely used tool for biosequence analysis
```