
CSE 527, Additional notes on MLE & EM
Based on earlier notes by C. Grant & M. Narasimhan

Introduction
Last lecture we began an examination of model based clustering. This  lecture will be the technical background
leading to the Expectation  Maximization (EM) algorithm.

Do gene expression data fit a Gaussian model? The central limit theorem implies that the sum of a large num-
ber of independent identically distributed random variables can be well approximated by a Normal distribu-
tion.  While it is far from clear that the expression data is a sum of independent variables,  using the Normal
distribution seems to work in practice. Besides, having a weak model is better than having no model at all. 

Probability Basics
A random variable can be continuous or discrete (or both). A discrete  random random variable corresponds to
a probability distribution on a  discrete sample space, such as the roll of a dice. A continuous random  variable
corresponds to a probability distribution on a continuous sample  space such as .  Shown in the table below
are two  examples of probability distributions, with the first representing a roll of  an unbiased die, and the
second representing a Normal distribution.

 

Discrete Continuous

Sample Space 81, 2, ... 6< 

Distribution p1, p2, ... p6 ¥ 0, ⁄i=1
6 pi = 1

p1 = p2 =. .. = p6 = 1
6

fHxL ¥ 0, Ÿ

fHxL  dx = 1

fHxL = 1

2 p s2
 e-Hx-mL2ë2 s2
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Parameter Estimation
Many distributions are parametrized. Typically, we have data  x1, x2, ..., xn that is sampled from a parametric
distribution f Hx » qL.  Often, the goal is to estimate the parameter q. The mean m  and variance s2are often used
as such parameters. Estimates of these quantities derived  from the sampled data are often called the sample
statistics, while the  (true) parameter based on the entire sample space is called the population  statistic. The
following table illustrates these two concepts. 

Discrete Continuous

Population Mean m = ⁄i i pi m = Ÿx fHxL dx

Population Variance s2 = ⁄i Hi - mL2 pi s2 = Ÿ Hx - mL2 fHxL dx

Sample Mean xê = ⁄i=1
n xi ên xê = ⁄i=1

n xi ên
Sample Variance sê2 = ⁄i=1

n Hxi - xêL2 ën sê2 = ⁄i=1
n Hxi - xêL2 ën

While the sample statistics can be used as estimates of these  parameters, this is often not the prefered way of
estimating these  quantities. For example, the sample variance s2 = ⁄i=1

n Hxi - xL2 ë n is a biased estimate of the
true  variance  because  it   underestimates  the  quantity  (an  unbiased  estimate  of  the  variance  is  given  by
s2 = ⁄i=1

n Hxi - xL2 ë Hn- 1L  ).  Maximum Likelihood Estimation is one of many parameter  estimation tech-
niques (note that the MLE is not guaranteed to be unbiased  either). 

Assuming the data are independent, the likelihood of the data x1, x2, ..., xn given the parameter q is

LHx1, x2, ..., xn » qL =¤i=1
n f Hxi » qL

where f is the probability density function of the presumed distribution (which of course dcepends on q).  Note
that the xi  are known constants,  not  variables; they are the values we observed.  On the other hand, q  is
unknown. We treat the likelihood L  as a function of q and ask what value of q maximizes it.  The typical
approach is to solve for

∂
∂ q

 LHx1, x2, ..., xn » qL = 0

Since  the  likelihood  function  is  always  positive  (and  we  may  assume  it  to  be  strictly  positive),  the  log
likelihood
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Since  the  likelihood  function  is  always  positive  (and  we  may  assume  it  to  be  strictly  positive),  the  log
likelihood

ln LHx1, x2, ..., xn » qL = ln¤
i=1

n

 f Hxi » qL = ⁄i=1ln f Hxi » qL

is well defined, and by the monotonicity of the logarithm, the log likelihood is maximized exactly when the
likelihood is maximized. Hence we can solve for

∂
∂ q

 ln LHx1, x2, ..., xn » qL = 0

Note that in general, these conditions are statisfied by maxima, minima and stationary points of the log-likeli-
hood function.  (A "stationary point" is a temporary flat spot on a curve that otherwise tends upward or down-
ward.)  Further, if q is restricted to be in some bounded range, then maxima might occur at the boundary which
does not satisfy this condition. Therefore, we need to check the boundaries separately. Here is an example
which illustrates this procedure. 

Example 1. Let x1, x2, ..., xn be coin flips, and let q be the probability of getting heads. Suppose we observe
n0 tails and n1 heads (n0 + n1 = nL. Then the likelihood function is given by 

LHx1, x2, ..., xn » qL = H1 - qLn0  qn1
Hence the log - likelihood function is

ln LHx1, x2, ..., xn » qL = n0 ln H1 - qL + n1 ln q

To find a value of q that maximizes this function, we solve for

∂
∂ q

 ln LHx1, x2, ..., xn » qL =
-n0
1-q

+ n1
q

= 0

This yields 
-n0
1-q

+ n1
q

= 0

n1H1 - qL = n0 q

n1 = Hn0 + n1L q
n1

Hn0+n1L = q

n1
n = q

(The sign of 2nd derivative can then be checked to guarantee that this is a maximum not a minimum. Likewise,
you can easily verify that the maximum is not attained at the boundaries of the parameter space, i.e. at q=0 or
q=1.)  This estimate for the parameter of the distribution matches our intuition.

Example 2. Suppose xi~NHm, sL, s2 = 1 and m unknown. Then

LHx1, x2, ..., xn » qL =¤i=1
n 1

2 p
 e-Hxi-qL2ë2

ln LHx1, x2, ..., xn » qL = S
i=1

n
K- 1

2  ln 2 p -
Hxi-qL2
2 O
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ln LHx1, x2, ..., xn » qL = S
i=1

n
K- 1

2  ln 2 p -
Hxi-qL2
2 O

∂
∂ q

 ln LHx1, x2, ..., xn » qL = ⁄i=1
n Hxi - qL = ⁄i=1

n xi - n q = 0

So the value of q that maximizes the likelihood is

q = ⁄i=1
n xi ên

Again matching our intuition: the sample mean is the maximum likelihood estimator (MLE) for the population 
mean.

Example 3. Suppose xi~NHm, sL, s2 and m unknown. Then

LHx1, x2, ..., xn » q1, q2L =¤i=1
n 1

2 pq2
 e-Hxi-q1L2ë2 q2

ln LHx1, x2, ..., xn » q1, q2L = S
i=1

n
K- 1

2  ln 2 p q2 -
Hxi-q1L2
2 q2

O

∂
∂ q1

 ln LHx1, x2, ..., xn » q1, q2L = ⁄i=1
n Hxi-q1L

q2
= 0ï⁄i=1

n xi ên = q1

∂
∂ q2

 ln LHx1, x2, ..., xn » q1, q2L = S
i=1

n
K- 1

2  2 p
2 p q2

+
Hxi-q1L2
2 q2

2 O = S
i=1

n
K- 1

2 q2
+

Hxi-q1L2
2 q2

2 O = 0ï⁄i=1
n Hxi - q1L2 ë n = q2

The MLE for the population variance is the sample variance. This is a biased  estimator. It  systematically
underestimates the population variance, but is none the less the MLE. The MLE doesn't promise an unbiased
estimator but it is a reasonable approach.

Expectation Maximization
The MLE approach works well when we have relatively simple parametrized distributions. However, when we
have more complicated situations, we may not be able to solve for the ML estimate because the complexity of
the  likelihood function  precludes  both  analytical  and  numerical  optimization.   The  EM algorithm can  be
thought of as an algorithm that provides a tractable approximation to the ML estimate. 

Consider the following example. We have data corresponding to heights of individuals, as shown in the figures
below. Is this distribution likely to be Normally distributed as shown below?
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Or is there some hidden variable, like gender, so the distribution should be more like this:
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Or is there some hidden variable, like gender, so the distribution should be more like this:
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The clustering problem can is essentially a parameter estimation problem : Try to find if there are hidden
parameters that cause the data to fall into  two distributions f1HxL, f2HxL. These distributions depend on some
parameter q: f1Hx, qL, f2Hx, qL, and there are also mixing parameters t1 and t2, t1 + t2 = 1, which describe the
probability of sampling from each group. Can we estimate  the parameters for the this more complex model?
Let's suppose that the two  groups are normal but with different, unknown, parameters.

The likelihood is now given by

LHx1, x2, ..., xn » t1, t2, m1, m2, s1, s2L =¤i=1
n ⁄j=1

2 t j f jIxi … q jM
If we try to work with this in our existing framework it becomes messy and algebraically intractable, due to the
product-of-sums form, and remains so even if we take the log of the likelihood.

This leads us to introduce the Expectation Maximization (EM) algorithm as a heuristic for finding the MLE. It
is particularly useful for problems containing a hidden variable. It uses a hill-climbing strategy to find a local
maximum of the likelihood. 

Introduce new variables

zij = : 1
0

 
iff xi was sampled from distribution j

otherwise

These variables are introduced for mathematical convenience. They let us avoid  a sum over j in the expression
for the likelihood. The full data table becomes

x1 z11 z12
x2 z21 z22
xn zn1 zn2

If the z were known, estimating t1, t2   and the other parameters would become easy again -- we'd have two
independent sets of data, each a single Gaussian.  Conversely, if we knew the parameters, estimation of the z
would be easy -- for each x, we simply calculate whether it is more likely to be a sample from component 1 or
component 2.  Points on the left will be much more likely to arise from component 1; those on the right, from
component 2.  (We may remain uncertain about points in the middle, but hopefully they will be few, and in
any event, we will appropriately weight each point based on our uncertainty about its status.) The EM algo-
rithm iterates over these alternatives. It can  be proved that the likelihood will be monotonically increasing,
and so will  converge to a (local) maximum. [There is a polynomial time algorithm for  estimating Gaussian
mixtures under the assumption that the components are  "well-separated," but the method is not used much in
practice.  I don't know whether the complexity of the general problem is  known; plausibly it's NP-hard.  So,
the EM algorithm is probably the method  of choice.]
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If the z were known, estimating t1, t2   and the other parameters would become easy again -- we'd have two
independent sets of data, each a single Gaussian.  Conversely, if we knew the parameters, estimation of the z
would be easy -- for each x, we simply calculate whether it is more likely to be a sample from component 1 or
component 2.  Points on the left will be much more likely to arise from component 1; those on the right, from
component 2.  (We may remain uncertain about points in the middle, but hopefully they will be few, and in
any event, we will appropriately weight each point based on our uncertainty about its status.) The EM algo-
rithm iterates over these alternatives. It can  be proved that the likelihood will be monotonically increasing,
and so will  converge to a (local) maximum. [There is a polynomial time algorithm for  estimating Gaussian
mixtures under the assumption that the components are  "well-separated," but the method is not used much in
practice.  I don't know whether the complexity of the general problem is  known; plausibly it's NP-hard.  So,
the EM algorithm is probably the method  of choice.]

Expectation  step

Assume fixed values for t j  and q j. Let A be the event that xi  is drawn from the distribution f1, let B be the
event that xi is drawn from f2, and let D be the event that xi is observed. We want PHA »DL, but it is easier to
find PHD » AL. We use Bayes' rule:

PHA »DL = PHD»AL PHAL
PHDL

PHDL = PHD » AL PHAL + PHD » BL PHBL = t1 PHD » AL + t2 PHD » BL = t1 f1Hxi » q1L + t2 f2Hxi » q2L
PHA »DL is the expected value of zi1 given q1 and q2. This is the expectation step of the EM algorithm.

To be concrete, consider a sample of points taken from a mixture of Gaussian distributions with unknown
parameters and unknown mixing coefficients. The EM algorithm will give estimates of the parameters that
raise the likelihood of the data.

An easy heuristic to apply is 

If EHzi1L ¥ 1 ê2 then set zi1 = 1
If EHzi1L < 1 ê2 then set zi1 = 0

This gives rise to the so-called Classification EM algorithm (we classify  each observation as coming from
exactly one of the component  distributions).  The k-means clustering algorithm is an example.  In this  case,
the maximization step is just like the simple Maximum Likelihood  Estimation examples considered above.
The more general M-step (below)  accounts for the inherent uncertainty in these classifications, appropriately
weighting the contributions of each observation to the parameter estimates  for each mixture component.

Maximization step

The expression for the likelihood is 

LHx1, z11, z12, x2, z21, z22, ... » q, tL
The xi  are known. If the zij  were known finding the MLE of q, t would be easy, but we  don't. Instead we
maximize the expected log likelihood of the visible data EHln LHx1, x2, ..., xn » q, tLL. The expectation is taken
over the distribution of the hidden variables  zij. Assuming s12 = s22 = s2, and t1=t2=t =I 12 M:

LHx, z » q, tL = ¤i=1
n t 1

2 ps2
 e-1ê2 s2J⁄j=1

2 zijIxi-m jM2N

so

EHln LHx, z » q, tLL = EJ⁄i=1
n ln 12 - 1

2  ln 2 ps2 - 1
2 s2

 ⁄j=1
2 zijIxi - m jM2N =

⁄i=1
n ln 12 - 1

2  ln 2 ps2 - 1
2 s2

 ⁄j=1
2 EIzijM Ixi - m jM2 

The last step above depends on the important fact that expectation is linear: if c and d are constants and X and
Y are random variables, then E(cX+dY)  = c E(X) + d E(Y).  We calculated EIzijM in the previous step. We can
now solve for the m j  that maximize the expectation by the methods given earlier: set derivatives to zero, etc.
With a little more algebra you will see that the MLE for m j  is the weighted  average of the xi's, where the
weights are the EIzijM's,which  makes sense intuitively: if a given point xi has a high probability of having been
sampled from distribution 1, then it will contribute strongly to our estimate of m1and weakly to our estimate of
m2.
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The last step above depends on the important fact that expectation is linear: if c and d are constants and X and
Y are random variables, then E(cX+dY)  = c E(X) + d E(Y).  We calculated EIzijM in the previous step. We can
now solve for the m j  that maximize the expectation by the methods given earlier: set derivatives to zero, etc.
With a little more algebra you will see that the MLE for m j  is the weighted  average of the xi's, where the
weights are the EIzijM's,which  makes sense intuitively: if a given point xi has a high probability of having been
sampled from distribution 1, then it will contribute strongly to our estimate of m1and weakly to our estimate of
m2.

It can be shown that this procedure increases the likelihood at every iteration, hence is guaranteed to converge
to a local maximum.  Unfortunately, it is not guaranteed to be the global maximum, but empirically it works
well in many situations.
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