
CSE 527: Computational Biology HW #2 due: Monday, Nov. 16

Turn this one in on paper; handwritten is fine. (Typeset is also fine, but all the math may be a
nuisance.) If you can’t make it to class on the due date, you can mail it to me, or scan your paper
and upload it to https://catalysttools.washington.edu/collectit/dropbox/ruzzo/7491.

Do any 6 problems below. Numbers 5 and/or 7 are especially recommended (but not the
easiest). If desired, do some of the others for extra credit (for extra practice and glory; it is not a
big component of your grade).

1. Bayes Rule: In a certain population, an obese person has a 30 percent chance of having
high blood pressure and a non-obese person has a 10 percent chance of having high blood
pressure. Twenty percent of the population is obese. What is the conditional probability that
a person is obese, given that the person has high blood pressure?

2. Maximum Likelihood: Suppose you scan a segment of genomic DNA triplet by (adjacent,
non-overlapping) triplet, looking at whether it might code for a protein. Of course, some
of those triplets will match amino acid codons and others will match stop codons. In other
words, you can partition the segment into so-called “open reading frames” or ORFs, where
one ORF consists of a maximal length (≥ 0) run of non-stop-triplets followed by one stop
triplet. Assuming the segment is actually non-coding, you might expect the lengths of ORFs
to be geometrically distributed, i.e., there is a 0 ≤ p ≤ 1 such that for any k > 0, the
probability of an ORF containing k − 1 consecutive non-stop triplets followed by one stop
is (1 − p)k−1 · p. (I.e., successive triplets are independently stops with probability p. I am
assuming the scan starts with the very first triplet of the sequence, and ignoring the issue of
looking at 1- and 2-nucleotide offsets from that, and/or the other strand.) Suppose such a
scan encounters ORFs of length x1, x2, . . . , xn. What is the maximum likelihood estimator of
p, assuming the geometric model above?

3. Hypothesis Testing: Continuing the framework of the previous problem, suppose a scan of
another region of the same genome finds an ORF of length k (k−1 non-stop triplets followed
by a stop triplet). Outline a simple statistical test, based just on this data, indicating whether
or not that ORF is likely to be a real protein coding gene. Evaluate your test assuming the
MLE for p was 3/64 and k = 100.

4. Maximum Likelihood: Let x1, x2, . . . , xn be n samples of a normal random variable X
with mean θ1 and variance θ2. In class derived the maximum likelihood estimates of θ1 and
θ2 when both are unknown. What is the MLE of the variance θ2 = σ2 if θ1 = µ is assumed
to be known?

For example, suppose I draw a sample of 3 measuring 9, 10, 11. The sample mean is 10,
sample standard deviation is

√
((9− 10)2 + (10− 10)2 + (11− 10)2)/3 =

√
2/3 ≈ .8. This

is not a surprising result if the population mean and varaince are ≈ 10 and ≈ 1, resp. But
suppose I told you the sample was drawn from a population with mean 0. Drawing a sample
of 9, 10, 11 is now much less likely, but is certainly possible, and is made more probable by
increasing our estimate of the population variance (the sample variance is unchanged; it’s
defined in terms of the sample mean, not the population mean). So the question is: now
that I know the population mean, what estimate of population variance make the data I just
observed most likely? Give me the general formula, as well as the value for these specific
observations.
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Extra Credit: From the in-class discussion, when θ1 and θ2 are both unknown, the MLE gives
a biased estimate of θ2 (but not θ1). In the case outlined in this problem, is your estimate of
θ2 biased, i.e., does the expected value of θ̂2 differ from the actual θ2 of the population from
which you have sampled?

5. EM: In class, I sketched an EM algorithm for learning the parameters of a two-component
Gaussian Mixture Model only in the special case when both subpopulations were assumed
to share the same variance and the mixing proportions (τ1/τ2) were assumed to be 50/50.
Carry out the analysis for the case where either σ2

1, and σ2
2 or 0 ≤ τ1 ≤ 1 (τ2 = 1 − τ1) are

arbitrary values to be estimated from the data along with µ1, µ2. Give a succinct (e.g., 1 or
2 sentence) English description of the result. Extra credit: Do the general case where all six
parameters µj , τj , σ

2
j , j = 1, 2 are simultaneously estimated from the same data.

6. Maximum Likelihood: (a) Suppose X is a discrete random variable with three possible
outcomes, say A1, A2 and A3. Let θ = (p1, p2, p3) be the probabilities of outcomes A1, A2, A3,
resp., (where p1 + p2 + p3 = 1, of course). Suppose you have collected n independent random
samples x1, x2, . . . , xn drawn from this distribution. Using the same basic approach as in the
coin-flipping example in the class notes (Lecture 4, circa slide 13), show that the maximum
likelihood estimators for the parameters θ are θ̂ = (n1/n, n2/n, n3/n), where ni is the number
of occurrences of outcome Ai among x1, x2, . . . , xn. Hint: The three variables are coupled,
since p3 = 1 − p1 − p2, so substitute for p3 using this identity before you differentiate. (b)
Generalize this to a variable with 4 possible outcomes. (You don’t need to prove it, but FYI,
it also generalizes to arbitrary multinomial distributions; see the slick proof in Chapter 11.
Also, the algebra is mildly easier if you happen to remember Lagrange multipliers from your
calculus class, but ignore this otherwise, it’s not a big deal.) (c) Suppose you observe N
nucleotide sequences sampled from the distribution defined by a fixed but unknown weight
matrix of width k. Show that the MLE for the matrix parameters is just the set of nucleotide
frequencies observed in each position.

7. EM: Recall that an allele of a gene is one variant of its DNA or protein sequence. Individuals
generally carry two (possibly identical) alleles of each gene, one inherited from mother, one
from father (genes on the X/Y chromosomes being exceptions). The ABO blood type gene has
three common alleles in the human population: A, B and O. The blood type of an individual
depends as follows on the pair of alleles that he or she has: type A if the pair is A/A or A/O;
type B if the pair is B/B or B/O; type AB if the pair is A/B; type O if the pair is O/O.
[If you want the jargon, O is recessive, A & B are dominant over O, and co-dominant with
respect to each other. Your genotype is the pair of alleles you carry; your phenotype is the
outward manifestation thereof. If you have two copies of the same allele, you are homozygous
at that locus; heterozygous if you have two different alleles.]

Let p(A) be the fraction of A alleles in the population, p(B), the fraction of B alleles and p(O),
the fraction of O alleles. These fractions are nonnegative and sum to 1. Under the simplifying
assumption that the population is in “Hardy-Weinberg equilibrium,” the probability that an
individual has a given pair of alleles is the same as the probability of obtaining that pair in
two random draws from the set of all alleles in the population. For example, the probability
of the pair A/B is 2p(A)p(B).

In a sample of 20 individuals, the first 9 have blood type A, the next 2 have blood type B, the
next has blood type AB and the last 8 have blood type O. Derive the appropriate formulas
needed to use the EM algorithm to determine the values of p(A), p(B) and p(O) most likely
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to have given rise to this data. Then run the algorithm for a few iterations on the given data.
Try it with a couple of very different starting estimates for the parameters. You may write a
program to do the iteration, do it by hand, or give a spreadsheet with the relevant formulas
and “fill down” a few rows to iterate. If you use a spreadsheet, if possibe, please turn in a
printout of the formulas as well as the numbers; I think CONTROL-backquote causes Excel
to show all formulas.

Hint: The parameters are p(A), p(B) and p(O), the observed data are the phenotypes (blood
types) of the individuals and the hidden data are the genotypes of (pairs of alleles possessed
by) the individuals. I suggest you formulate the problem using 20 zero/one variables zi to
represent the hidden data, where zi = 1 means individual i is homozygous; zi = 0 means
heterozygous. (Actually, zi is unknown only for the first 11 individuals.) The solution to
problem 6 may help; it is an analogous 3 parameter problem without hidden data. Depending
on how you set up the likelihood function, you might (or more likely might not) need the
multinomial distribution from pg 300 of the text.

(If you’d like to know more about the genetics of the ABO blood group system, the
1930 Nobel prize in Physiology or Medicine, look at Wikipedia http://en.wikipedia.org/
wiki/Abo_blood_group or OMIM http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?
id=110300. In a nutshell, they are 3 alleles of a single gene on the ninth chromosome (9q34)
that encodes a glycosyltransferase—an enzyme that modifies the carbohydrate content of the
red blood cell antigens. The A and B alleles perform slightly (but immunologically signifi-
cantly) different modifications; the O allele has a 1 base deletion, hence an altered reading
frame, producing a very different protein with no apparent function at all, a so-called “null”
allele, more or less explaining why the O allele is recessive or “silent.” Aside from issues with
blood transfusions, people with O blood type are apparently more susceptible to cholera.
And, no, the “Hardy-Weinberg” assumption for this gene is not well justified in the human
population; prevalence is strongly dependent on geography. But we’ll ignore that for this
problem...)

8. Maximum Likelihood: Suppose X is a random variable uniformly distributed between 0
and θ > 0 for some unknown θ. Based on a sample x1, x2, . . . , xn of X, what is the maximum
likelihood estimator of θ? Is it biased? If so, what is the unbiased estimator?

9. EM: Generalize the EM algorithm from problem 5 to allow a fixed but arbitrary number
k ≥ 1 of components in the mixture, preferably allowing a choice of either a common variance
σ2 shared by all clusters, or a separate variance per cluster. You might also generalize to
multi-dimensional data (but note that you either need to make simplifying assumptions about
the covariance structure of the data, or to estimate many more parameters). Implement it
(or find code on the web; tell me where) and experiment with simulated data to see how well
it recovers the parameters you used to generate the data. How quickly does the iteration
converge? Does it ever seem to be converging to a local, not global, max? How well does it
work with sparse data? Well-separated clusters? Highly overlapping clusters? (This problem
is very open-ended; you don’t need to address all the questions above. Do what you can in a
reasonable amount of time and tell me about it.)

10. EM: The method in the previous problem in the case of a common variance σ2 shared by
all clusters (and no covariance in the multidimensional case) is closely related to “K-means
clustering.” Lay out the similarities and differences. Perhaps write or find code for both and
compare them on some simple simulated data sets.
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11. Parsimony: Empirically, it has been observed that evolving nucleotide sequences are more
likely to undergo transitions (substitution of one purine for the other, i.e. A↔G, or one
pyrimidine for another, i.e., C↔T) than transversions (substition of a pyrimidine for a purine
or vice versa). Redo the parsimony calculation shown in my lecture slides (Lecture 10,
11/2/09, approximately slides 11-15) assuming that the nucleotides at the leaves are TCAGA
(in left-to-right order) and assuming that transitions have a cost of 1, whereas transversions
cost 2. (Please show enough of your intermediate work so that I can see that you understand
the method.)
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