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CSE 527
Autumn 2007

Lectures 8-9 (& part of 10)
Motifs: Representation & Discovery
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DNA Binding Proteins

A variety of DNA binding proteins 
(“transcription factors”; a significant fraction, 
perhaps 5-10%, of all human proteins) 
modulate transcription of protein coding 
genes
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The Double Helix

Los Alamos Science
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In the 
groove

Different 
patterns of 
potential H 
bonds at 
edges of 
different 
base pairs, 
accessible 
esp. in 
major 
groove

Alberts, et al.
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Alberts, et al.

Helix-Turn-Helix DNA Binding Motif
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H-T-H Dimers

Bind 2 DNA patches, ~ 1 turn apart
Increases both specificity and affinity

Alberts, et al.
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Zinc 
Finger 
Motif

Alberts, et al.
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Leucine Zipper Motif

Homo-/hetero-dimers 
and combinatorial 

control

Alberts, et al.
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Some Protein/DNA 
interactions well-understood 
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But the overall 
DNA binding 

“code” still defies 
prediction
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Bacterial Met Repressor

SAM (Met 
derivative)

Alberts, et al.

a beta-sheet DNA binding domain
Negative feedback loop: 

high Met level ⇒ repress Met synthesis genes
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DNA binding site 
summary

• complex “code”

• short patches (6-8 bp)

• often near each other (1 turn = 10 bp)

• often reverse-complements

• not perfect matches
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Sequence Motifs

Last few slides described structural motifs in 
proteins

Equally interesting are the DNA sequence 
motifs to which these proteins bind - e.g. , 
one leucine zipper dimer might bind (with 
varying affinities) to dozens or hundreds of 
similar sequences
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E. coli Promoters

“TATA Box”  ~ 10bp upstream of 
transcription start
How to define it?

Consensus is TATAAT
BUT all differ from it
Allow k mismatches?
Equally weighted?
Wildcards like R,Y?  ({A,G}, {C,T}, resp.)

TACGAT
TAAAAT
TATACT
GATAAT
TATGAT
TATGTT
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E. coli Promoters
• “TATA Box” - consensus TATAAT ~ 

10bp upstream of transcription start
• Not exact: of 168 studied (mid 80’s)
– nearly all had 2/3 of TAxyzT
– 80-90% had all 3
– 50% agreed in each of x,y,z
– no perfect match

• Other common features at -35, etc.
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TATA Box Frequencies

pos
base       1  2  3  4  5  6

A    2 95 26 59 51  1

C    9  2 14 13 20  3

G 10 1 16 15 13 0

T 79 3 44 13 17 96
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TATA Scores
pos

base       1 2 3 4 5 6

A -36 19 1 12 10 -46

C -15 -36 -8 -9 -3 -31  

G -13 -46 -6 -7 -9 -46(?)

T 17 -31 8 -9 -6 19
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Scanning for TATA

Stormo, Ann. Rev. Biophys.  Biophys Chem, 17, 1988, 241-263

A
C
G
T

A
C
G
T

A
C
G
T
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Score Distribution 
(Simulated)
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Weight Matrices: 
Statistics

Assume:

fb,i = frequency of base b in position i in TATA

fb  = frequency of base b in all sequences

Log likelihood ratio, given S = B1B2...B6:
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Neyman-Pearson
Given a sample x1, x2, ..., xn, from a distribution f
(...|Θ) with parameter Θ, want to test 
hypothesis Θ = θ1 vs Θ = θ2.

Might as well look at likelihood ratio:

    f(x1, x2, ..., xn|θ1) 
    f(x1, x2, ..., xn|θ2)

(or log likelihood ratio)

>  τ
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Score Distribution 
(Simulated)
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What’s best WMM?

Given 20 sequences s1, s2, ..., sk of length 8, 
assumed to be generated at random 
according to a WMM defined by 8 x (4-1) 
parameters θ, what’s the best θ?

E.g., what’s MLE for θ given data s1, s2, ..., sk?

Answer: count frequencies per position.
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Weight Matrices: 
Chemistry

Experiments show ~80% correlation of log 
likelihood weight matrix scores to measured 
binding energy of RNA polymerase to 
variations on TATAAT consensus
[Stormo & Fields]
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ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG

Freq.  Col 1 Col 2 Col3
A .625 0 0
C 0 0 0
G .250 0 1
T .125 1 0

LLR  Col 1 Col 2 Col 3
A 1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2.00
T -1.00 2.00 -∞

Another WMM example

log2
fxi,i

fxi

, fxi =
1
4

8 Sequences:

Log-Likelihood Ratio:
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• E. coli - DNA approximately 25%  A, C, G, T

• M. jannaschi - 68% A-T,  32% G-C

LLR from previous 
example, assuming

e.g., G in col 3 is 8 x more likely via WMM 
than background, so (log2) score = 3 (bits).

LLR  Col 1 Col 2 Col 3
A   .74 -∞ -∞
C -∞ -∞ -∞
G  1.00 -∞ 3.00
T -1.58 1.42 -∞

Non-uniform Background

fA = fT = 3/8
fC = fG = 1/8
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AKA Kullback-Liebler Distance/Divergence, 
AKA Information Content

Given distributions P, Q

Notes: 
   

Relative Entropy

H(P ||Q) =
∑

x∈Ω

P (x) log
P (x)
Q(x)

Undefined if 0 = Q(x) < P (x)

Let P (x) log
P (x)
Q(x)

= 0 if P (x) = 0 [since lim
y→0

y log y = 0]

≥ 0
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WMM: How “Informative”?
Mean score of site vs bkg?
For any fixed length sequence x, let
P(x)  = Prob. of x according to WMM
Q(x) = Prob. of x according to background

Relative Entropy:

H(P||Q) is expected log likelihood score of a  
sequence randomly chosen from WMM; 
-H(Q||P) is expected score of Background

H(P ||Q) =
∑

x∈Ω

P (x) log2
P (x)
Q(x)

H(P||Q)-H(Q||P)
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WMM Scores vs 
Relative Entropy
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For WMM, you can show (based on the 
assumption of independence between 
columns), that :

where Pi and Qi are the WMM/background 
distributions for column i.

H(P ||Q) =
∑

i H(Pi||Qi)
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Freq.  Col 1 Col 2 Col3
A .625 0 0
C 0 0 0
G .250 0 1
T .125 1 0

LLR  Col 1 Col 2 Col 3
A  1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2.00
T -1.00 2.00 -∞

RelEnt   .70 2.00 2.00 4.70

LLR  Col 1 Col 2 Col 3
A   .74 -∞ -∞
C -∞ -∞ -∞
G  1.00 -∞ 3.00
T -1.58 1.42 -∞

RelEnt    .51 1.42 3.00 4.93

WMM Example, cont.

Uniform Non-uniform
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Pseudocounts

Are the -∞’s a problem?
Certain that a given residue never occurs 
in a given position?  Then -∞ just right

Else, it may be a small-sample artifact

Typical fix: add a pseudocount to each observed 
count—small constant (e.g., .5, 1) 

Sounds ad hoc; there is a Bayesian justification
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WMM Summary

• Weight Matrix Model (aka Position Specific Scoring Matrix, 
PSSM, “possum”, 0th order Markov models)

• Simple statistical model assuming independence 
between adjacent positions

• To build: count (+ pseudocount) letter frequency per 
position, log likelihood ratio to background

• To scan: add LLRs per position, compare to threshold
• Generalizations to higher order models (i.e., letter 

frequency per position, conditional on neighbor) also 
possible, with enough training data
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How-to Questions

Given aligned motif instances, build model?
- Frequency counts (above, maybe with pseudocounts)

Given a model, find (probable) instances
- Scanning, as above

Given unaligned strings thought to contain a 
motif, find it?  (e.g., upstream regions for co-expressed 
genes from a microarray experiment)

- Hard... rest of lecture.
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Motif Discovery

Unfortunately, finding a site of max relative 
entropy in a set of unaligned sequences is 
NP-hard [Akutsu]
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Motif Discovery: 
4 example approaches
Brute Force

Greedy search

Expectation Maximization

Gibbs sampler
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Brute Force

Input:
• Seqs s1, s2, ..., sk (len ~n, say), each w/ one instance 

of an unknown length l motif
Algorithm:

• create singleton set with each length l 
subsequence of each s1, s2, ..., sk (~nk sets)

• for each set, add each possible length l 
subsequence not already present (~n2k(k-1) sets)

• repeat until all have k sequences (~nkk! sets)
• compute relative entropy of each; pick best

pr
ob

le
m

: 
as

tr
on

om
ic

al
ly

 s
lo

oo
ow
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Greedy Best-First Approach
[Hertz & Stormo]

Input:
• Sequence s1, s2, ..., sk; motif length I; “breadth” d

Algorithm:
• create singleton set with each length l 

subsequence of each s1, s2, ..., sk

• for each set, add each possible length l 
subsequence not already present

• compute relative entropy of each
• discard all but d best
• repeat until all have k sequences us

ua
l  

“g
re

ed
y”

  p
ro

bl
em

s

X

XX



39

Yi,j =
{

1 if motif in sequence i begins at position j
0 otherwise

Expectation Maximization 
[MEME, Bailey & Elkan, 1995]

Input (as above):

Sequence s1, s2, ..., sk; motif length l; background 
model; again assume one instance per sequence 
(variants possible)

Algorithm: EM

Visible data: the sequences

Hidden data: where’s the motif

Parameters θ: The WMM
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MEME Outline

Typical EM algorithm:

• Parameters θt at tth iteration,  used to estimate 
where the motif instances are (the hidden variables)

• Use those estimates to re-estimate the parameters θ 
to maximize likelihood of observed data, giving θt+1

• Repeat

Key: given a few good matches to best motif, 
expect to pick out more
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Ŷi,j = E(Yi,j | si, θt)

= P (Yi,j = 1 | si, θt)

= P (si | Yi,j = 1, θt)P (Yi,j=1|θt)
P (si|θt)

= cP (si | Yi,j = 1, θt)

= c′
∏l

k=1 P (si,j+k−1 | θt)

where c′ is chosen so that
∑

j Ŷi,j = 1.

E = 0 · P (0) + 1 · P (1)

Baye
s

Expectation Step
(where are the motif instances?)

1 3 5 7 9 11 ...

Sequence i

Ŷi,j }∑=1
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Q(θ | θt) = EY ∼θt [log P (s, Y | θ)]

= EY ∼θt [log
∏k

i=1 P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1 log P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log P (si, Yi,j = 1 | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log(P (si | Yi,j = 1, θ)P (Yi,j = 1 | θ))]

=
∑k

i=1

∑|si|−l+1
j=1 EY ∼θt [Yi,j ] log P (si | Yi,j = 1, θ) + C

=
∑k

i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Maximization Step
(what is the motif?)

Find θ maximizing expected value:



Exercise: Show this is 
maximized by “counting” 
letter frequencies over 
all possible motif 
instances, with counts 
weighted by      , again 
the “obvious” thing.

M-Step (cont.)
Q(θ | θt) =

∑k
i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Ŷi,j

s1 : ACGGATT. . .
. . .

sk : GC. . . TCGGAC

Ŷ1,1 ACGG
Ŷ1,2 CGGA
Ŷ1,3 GGAT

...
...

Ŷk,l−1 CGGA
Ŷk,l GGAC
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Initialization

1. Try every motif-length substring, and use as 
initial θ a WMM with, say 80% of weight on 
that sequence, rest uniform

2. Run a few iterations of each

3. Run best few to convergence

(Having a supercomputer helps)



The Gibbs Sampler
Lawrence, et al.  “Detecting Subtle Sequence Signals:  A 

Gibbs Sampling Strategy for Multiple Sequence 
Alignment,” Science 1993

Another Motif 
Discovery Approach







Geman & Geman, IEEE PAMI 1984

Hastings, Biometrika, 1970

Metropolis, Rosenbluth, Rosenbluth, Teller, & 
Teller, “Equations of State Calculations by Fast 
Computing Machines,” J. Chem. Phys. 1953

Josiah Williard Gibbs, 1839-1903,  American 
physicist, a pioneer of thermodynamics

Some History



How to Average

An old problem: 
n random variables:
Joint distribution (p.d.f.): 
Some function:     
Want Expected Value:

x1, x2, . . . , xk

P (x1, x2, . . . , xk)

E(f(x1, x2, . . . , xk))
f(x1, x2, . . . , xk)



How to Average

Approach 1: direct integration 
   (rarely solvable analytically, esp. in high dim)
Approach 2: numerical integration 
   (often difficult, e.g., unstable, esp. in high dim)
Approach 3: Monte Carlo integration
    sample                                   and average:

E(f(x1, x2, . . . , xk)) =∫

x1

∫

x2

· · ·
∫

xk

f(x1, x2, . . . , xk) · P (x1, x2, . . . , xk)dx1dx2 . . . dxk

E(f(!x)) ≈ 1
n

∑n
i=1 f(!x(i))

!x(1), !x(2), . . . !x(n) ∼ P (!x)



Markov Chain Monte 
Carlo (MCMC)

• Independent sampling also often hard, but not 
required for expectation

• MCMC                                 w/ stationary dist = P

• Simplest & most common: Gibbs Sampling

• Algorithm
for t = 1 to ∞
   for i = 1 to k do : 

P (xi | x1, x2, . . . , xi−1, xi+1, . . . , xk)

xt+1,i ∼ P (xt+1,i | xt+1,1, xt+1,2, . . . , xt+1,i−1, xt,i+1, . . . , xt,k)

t+1    t

!Xt+1 ∼ P ( !Xt+1 | !Xt)



1 3 5 7 9 11 ...

Sequence i

Ŷi,j



• Input: again assume sequences s1, s2, ..., sk 
with one length w motif per sequence

• Motif model:  WMM
• Parameters:  Where are the motifs?

for 1 ≤ i ≤ k, have 1 ≤ xi ≤ |si|-w+1
• “Full conditional”: to calc

build WMM from motifs in all sequences 
except i, then calc prob that motif in ith seq 
occurs at j by usual “scanning” alg. 

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)
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Randomly initialize xi’s
for t = 1 to ∞
   for i = 1 to k 
      discard motif instance from si; 
      recalc WMM from rest
      for j = 1 ... |si|-w+1

         calculate prob that ith motif is at j:

         pick new xi according to that distribution 

Similar to 
MEME, but it 
would 
average over, 
rather than 
sample from

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)

Overall Gibbs Alg



Burnin - how long must we run the chain to 
reach stationarity?

Mixing - how long a post-burnin sample must 
we take to get a good sample of the 
stationary distribution?  (Recall that individual 
samples are not independent, and may not 
“move” freely through the sample space.  
Also, many isolated modes.)

Issues



“Phase Shift” - may settle on suboptimal 
solution that overlaps part of motif. 
Periodically try moving all motif instances a 
few spaces left or right.

Algorithmic adjustment of pattern width:
Periodically add/remove flanking positions to 
maximize (roughly) average relative entropy 
per position

Multiple patterns per string

Variants & Extensions
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• 13 tools

• Real ‘motifs’ (Transfac)

• 56 data sets (human, mouse, fly, yeast)

• ‘Real’, ‘generic’, ‘Markov’

• Expert users, top prediction only

Methodology



*     *     $    *     ^     ^     ^         *                    *
$ Greed
* Gibbs
^ EM
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Lessons
• Evaluation is hard (esp. when “truth” is unknown)

• Accuracy low

• partly reflects defects in evaluation methodology 
(e.g. <= 1 prediction per data set; results better 
in synth data)

• partly reflects difficult task, limited knowledge 
(e.g. yeast > others)

• No clear winner re methods or models
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Motif Discovery 
Summary

• Important problem: a key to understanding gene 
regulation

• Hard problem: short, degenerate signals amidst much 
noise

• Many variants have been tried, for representation, 
search, and discovery.  We looked at only a few:
• Weight matrix models for representation & search
• greedy, MEME and Gibbs for discovery

• Still much room for improvement.  Comparative 
genomics, i.e. cross-species comparison is very promising


