CSE 527

 10.2.06

Lecture 2

 Justin Shaffer
Sequence Alignment – Part 1
Administrative Notes

· Homework 1 is due 10.9.06

· Possible programming languages to use for class

· R, Ruby, Python, C, C++, Java, Perl, MATLAB, Octave,…

People have been getting sequences since the 1950s

· Essential to computational biology

· Need to be searchable for comparison purposes

What is sequence similarity?

· Aligning two sequences by common nucleotides

· Can include spacers to make a better fit

Why is sequence alignment important?

· Can compare sequences to databases of sequences

· Similar sequences often have similar origin or function

· Selection and survival occurs at the system level, but mutations occur at the sequence level

· Mutations in DNA can occur through chemical, radiation, or transcription errors

· Recognizable similarity is noticeable after 108 to 109 years

Can use Genbank search to check sequences

· BLAST is a sequence comparison tool

· Can compare nucleotide or protein sequences or entire genomes for similarity

· http://www.ncbi.nlm.nih.gov/blast/
· lower case nucleotides may indicate uncertainty in sequence

· predicted sequences are determined by some algorithm

· taxonomic score gives the number of hits by taxonomy

· E-values start at 0.0 for near perfect matches

· For a given match, the E-value describes the expected number of matches that you will find that are as good or better than the current one, in a random data base of the same size.

· BLAST is useful because…

· Webserver

· Fast

· E-values give statistical significance of match

Sequence Terminology

· String – ordered list of letters

· Prefix – consecutive letters from front of string

· Suffix – consecutive letters from end of string

· Substring – letters from end or middle

· Subsequence – ordered, nonaligned letters

· Alignment – of strings S and T is a pair of strings (with spaces) S’ and T’

· |S’| = |T’| = length of S

Alignment Scoring

· Mismatch (-1), Match (+2) [For examples on slides, only.]

· The score of aligning two sequences S and T is σ(S, T)

· The value of an alignment is the sum of all of the scores of the strings S’ and T’ from one to |S’| -- BIG assumption, e.g. assumes adjacent positions independent

· The optimal alignment is the one that results in the maximum alignment score

· Bonuses for correct alignment, penalties for mistakes

· Scoring amino acid sequence alignment can be difficult

· Scores can be based on side chains

· Reflects chemical/physical properties of amino acids

Where do scores come from?

· Develop an algorithm to compare sequences and tabulate maximal score

· Simple method

· For all subsequences A of S and B of T, set |A| = |B|

· Align A(i) = B(i) for 1 <= I <= |A|

· Align all other characters to spaces

· Compute values

· Retain the max alignment

· Assume n = |S| = |T|

· Cost of evaluation of one alignment is 2n

· Polynomial versus exponential growth

· 22n hits wall really fast

· run time grows with stiffness

Example: Fibonacci Numbers

· Uses a simple recursion loop, but results in a huge number of cycles (subproblems)

· Values at n – 1 and n – 2 is calculated for every cycle

· Time = Ω(1.61n)

· Can use dynamic programming to greatly speed up run time

· By using a table or array, values from each iteration can be stored into memory and thus do not need to be calculated every cycle

· Time = O(n)

What is the optimal substructure to use for determining alignment?

· The optimal alignment ends in one of three ways…

· Last character of S and T are aligned to each other

· Last character of S is aligned with a spacer in T

· Last character of T is aligned with a spacer in S

· Never align spacer with spacer (σ(--,--) < 0)

· In each case, the remainder of S and T should be optimally aligned to each other

· The optimal alignment can be accomplished in O(n2) time by using dynamic programming

· Input: S and T, |S| = n and |T| = m

· Output: value of optimal alignment

· It is easier to solve a “harder” problem

· V(i,j) = value of optimal alignment of S[1], S[2], … , S[i] with T[1]…T[j]

· Etc, etc…

Recursion

· See powerpoint notes for example of how to use the following algorithm

· / V(i-1,j-1) + σ(S[i],T[j])

· V(i,j) = max | V(i-1,j) + σ(S[i],--)

· \ V(i,j-1) + σ(--,T[j]) for all 1 <= I <= n, 1 <= j <= m

· fill in the entries row by row or column by column in order to fill in the entire table

· S is for rows

· T is for columns

· The time to run this algorithm will be O(m*n)

· The goal is to find the n x m entry of the table

· This will tell you the score of the overall best match, but not what the match is!

· To find out what the best match is, trace back in the table to the 1 x 1 entry

Complexity Notes

· Time = O(m*n)

· Physical space = O(m*n)

· Practical to use this algorithm for small values of m and n

· Space can be more of a limitation than time (there’s a more complex algorithm that reduces space to O(max(m,n)), still in O(mn) time).

Part II – Variations in Sequence Alignment

· Local alignment

· Preceding algorithm gives global alignment (uses the full length of both strings)

· This method might well miss strong similarity of the middle of the strings

· Gap penalties

· Some worth more than others

· Gaps are correlated

· Better to lose 3n nucleotides than any other number

· 3 nucleotides per codon

More on these variants next lecture.

PAGE
3

