CSE 527 11/29/06 **Lecture 19**

Paper: Distance vs Accuracy

- low distance \rightarrow low accuracy
- greater distance \rightarrow greater accuracy
- increase distance more \rightarrow decrease accuracy, levels out
- structure aligning adhoc, useful but not tremendous

CM Finder

- simultaneous aligns and predicts structure
- idea(heuristic):
 - pick out interesting regions to start
 - \succ *EM* iteration
 - ➤ realign (via Viterbi)
- use mutual information + folding energy to predict structure
- Heuristics: "finding candidate"
 - ➢ scan sequence & look for low energy for candidate
 - ▶ tree edit $\leftarrow \rightarrow$ Vienna algorithm
 - o how to convert one tree to another
 - secondary structure of RNA can be abstracted to tree, not much evolutionary considerations
 - o look for similarities
 - can calculate closest of all previous candidates (minimizes sum of distances to all others)
 - o result: generate a sequence of candidates
 - ▶ for every candidate set \rightarrow apply *EM*
 - \blacktriangleright can have different & strong *BLAST* sequence match
 - align *BLAST* anchors to the candidate sequence
- How to build structure model?
 - > got alignment, maximize joint probability of data & structure
 - > assume independence of unpaired columns
 - ➤ within column pair model dependence
 - > no prior knowledge of what's paired:
 - $I_{ij} = \log (P(LiL_j)/P(L_i)P(L_j)) \rightarrow$ sum of mutual information terms
 - ➤ have prior knowledge of what's paired:
 - \circ P(D,sigma) = P(D | sigma) * P(sigma)
 - = (single stranded product)*(double stranded product = K_{ij})
 - \circ D = data, sigma = structure
 - $K_{ij} = I_{ij} + \log(P_{ij}/(s_{i*s_{i}}))$ ← prior information
 - Question: how to know of prior information?
 - take single structure estimate and thermodynamics
 - not rigorously "prior" in Baysian sense, but heuristically has the same effect

- *CM Finder* works best on Rfam families w/flanking sequences versus RNA Alifold, CARNAC, FOLDALIGN
- Table:
 - ➢ sequence length range widely
 - CARNAC has high specificity but low sensitivity (tradeoff)
 - CM Finder has better balance

Applications of CM Finder

- look for RNA elements in prokaryotes
 - > goal: infer structure prediction of these RNA
 - > more efficient to search for cis-regulatory RNA elements
 - ➢ use comparisons between genome
- Approach:
 - pick favorite bacteria
 - ➢ find close othologous (BLAST/CDD)
 - best genes (Footprint finds patterns)
 - ➤ CM Finder for structure motif
 - ➢ search genome database for more homologs to narrow down candidates
- Footprinter.
 - > find small patches that are nearly identical from one sequence to next
 - > suppose to allow no gap, but gaps interesting because might be hairpin, etc.
 - test successful interesting patterns (turns out to be T-box in this case)
 - > amino acid and t-RNA joined by amino acyl tRNA-synthetase:
 - tyrS effects uncharged tRNA
 - o yes/no amino acid attached effects its shape
 - o if uncharged, causes downstream genes to produce more tRNAsynthetase to charge it
- Results:
 - Want to rediscover things that are known, to reinforce novel results
 - Ranking of Rfam family
 - Specificity low \rightarrow mixture of two groups and only found half
 - $30 \sim 40\%$ of bacterial energy goes to ribosomal protein \rightarrow how to coordinate?
 - Ex.: when L19 bound/unbound, different shapes of mRNA leader for that ribosomal protein

Future Works

- Better identifying duplicates, improve rankings
- Scale up to eukaryotes, but 2~3 orders of magnitude more work to do that
- Summary:
 - Covariance: powerful, expensive
 - ▶ *Rigorous/Heuristic filtering*: faster, low loss in accuracy
 - ➤ CM finder: CM based motif discovery