CSE 527 11.1.06

Substring parsimony problem

- Goal is to determine sequence similarity across species using phylogenic trees
- Want to find all possible sets of k-mers so that parsimony score is at most a threshold value

Small Example

- Find motif of length four between five species
- One mutation needed

Plant example (rcbs)

- Sequences are aligned at start codon, but motifs are not aligned
- Proteins regulate when these genes are expressed or not
- 50% of protein mass of green leaves key player in photosynthesis

An Exact Algorithm

- generalized from Sankoff and Rousseau
- need to keep track of adjacent bases to run algorithm
- at each leaf, build a table that says what are the scores for the motifs
- need a table of size $4^{k} 4$ bases to pick from
- ACGT can become ACGG through one mutation total cost of two for two leaves

Recurrence

- $W_{u}[s] \rightarrow$ score of W of string s at node u
- Running time → O(k * 4^{2k}) if two children per node
 If sequence is length 5, running time is 4^{2*5} = 2²⁰ = order of 1 million; probably can be done on desktop computer

Improvements

- Are only looking for small parsimony scores
 - \circ Can limit the number of trees that you need to look it \rightarrow cuts running time
 - Allows algorithm to be practical
 - Webserver apps exist for this algorithm \rightarrow few minutes to find result

B-actin example

- Motif of length 13 matched in all 10 organisms
- Can it happen by chance? $\rightarrow 4^{13} = 2^{26}$ chance that it occurs randomly
 - Most likely this is a conserved sequence that occurs for a reason

Motifs absent from some species

- Motifs can be lost from say fish compared to mammals over time
- Parsimony score would then be bad when comparing fish to mammals just because they are not there
- 2 Objective functions → smallest parsimony score and largest part of tree

- how to accommodate both?
 - Ask for tree sizes based on number of mutations needed
- As get farther away in phylogeny, larger parsimony score

Conclusions

- Well motivated problem definition
- Exact algorithm for solving it
- Linear in # species, exponential in parsimony score
- Able to discover highly conserved regions, both known and not yet known
 - Experiments can determine TF binding sites as well

New topic

Markov Models and Hidden Markov Models

DNA Methylation

- Recognizing CpG islands adjacent C and G on same strand
- C of CpG can be methylated in eukaryotes (~70-80% in mammals)
- Plants seem to have evolved CpG methylation independently
- One function of methylation \rightarrow silences transcription; could limit TF binding
 - Also could use to delineate stem cell derivatives (stem cell → kidney or liver?)
- If both strands methylated, upon cell division, daughter strands not methylated, but parent strands are, so DNA is said to be hemi-methylated
- DNA methyltransferases can then methylate the daughter strands, thus forming fully-methylated DNA and turning off that gene
- Is a key obstacle to cloning → need to de-methylate DNA to differentiate cells into other kinds of cells (allow for selective gene expression)
- X-inactivation → for females (two X chromosomes) large parts of one chromosome are methylated to disallow double expression of some proteins
- Housekeeping genes are not methylated

CpG Islands

- Methyl-C can mutate to T \rightarrow pretty easy to do (amino \rightarrow carboxyl and H \rightarrow CH₃)
- The net result is that CpG is less common than expected
 - Frequency of CpG < (Frequency of C) * (Frequency of G)
- Because housekeeping genes are not methylated, they retain their CpG character
 - The CpG to TpG transition is less likely here, so there are large densities of CpG in promoter regions
- Typical length → few 100 to few 1000 bp
- Questions
 - If short sequence (200 bp), is that a CpG island?
 - If long sequence (1000-10000 bp), can you find CpG islands?

Markov and Hidden Markov Models (HMM)

• Textbook and tutorial article are good references

• Can handle dependency on adjacent positions (CpG)

Markov Chains

- Zeroth order means that the system is independent of its neighbors
- 1st order depends on previous value (ACGT)

1st order Markov Model

- States: A,C,G,T
- Have probabilities of transitioning from $A \rightarrow G$, $T \rightarrow C$, etc, etc...
- Emissions → corresponding letter
- Can add special Begin and End states
 - Proteins always start with Met
- Probabilities are dependent only on the previous state $\rightarrow P(x_n | x_{n-1})$

Is a short sequence a CpG island?

- Gather statistics from larger sequences and CpG islands
 - Probability of CpG is 27%
 - For non-CpG island data \rightarrow 8%
- Discrimination/classification
 - Look at the log-likelihood ratio of CpG model vs background (non-CpG) model
 - Take logs of ratios of tables for CpG and non-CpG data to create a table for the beta data
 - CpG is 2^{1.8} more likely in CpG model vs background
 - Add up beta values for all subsequent pairs in data, if score is positive it most likely is a CpG island
- Since Cs are more likely in CpG islands, could also have an independent model looking at the number of Cs in data
- Do not need to fully understand mechanism

1st order Weight Matrix Model (WMM)

- Column n is dependent on column (n-1)
- Need to have enough example data to cover number of parameters
- WMM are usually 0th order because of this
- Number of parameters grows exponentially with order of model

Given a long sequence where are the CpG islands in it? (if any?)

- Approach 1 \rightarrow score subsequences (windows) of the model
 - Simple, but arbitrary, is fixed length a good idea?, inflexible
- Approach 2 → combine the +/- models

Combined model

- Incorporates CpG+ and CpG- models
- E.g. How often is a CpG- A followed by a CpG+ G ??

- Involves crossing between models
- Defines probability distributions of sequences
- Is it more likely a stretch of NT comes from the CpG+ or the CpG-?
 - Every NT is ambiguous in terms of where it came from
 - The state sequence is hidden → only emission sequence is detected
 A *Hidden* Markov Model (HMM)
 - Can try to label states (NT) to determine which part of model NT came from
 - Impossible though, because there are non-zero probabilities that either part of model can emit entire sequence
 - What is the most probable path through the model that emits this sequence? Where did it come from?