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Comment to previous session 
It was said that SAM  was a MET precursor, but in fact each can be derivated from the other.  It 
remains true, however, that SAM is biochemically important (the main donor of methyl groups 
for various methylation reactions), and the MET repressor senses SAM level as part of a feedback 
system for control and expression of related genes. 

Review of Motif Discovery approaches. 
After a general discussion on Maximum Likelihood Estimators and the Expectation 
Maximization Algorithm, we discussed approaches to motif finding, motivated by the working 
innards of the gene expression and regulation mechanisms. 
These tools will allow us to find regulatory motifs in biological sequence data. We will ultimately 
search for a maximum entropy model for the distribution under study compared to a random 
background. The approaches we'll review are: 

• Brute Force algorithms – slow, exponential complexity growth 
• Greedy Search, as described in Hertz & Stormo 
• Expectation maximization 
• Gibbs sampler 

Brute Force 
From previous experience, we may know that the motif we are searching has length l. Besides 
this major assumption, we may also add other constraints to our search: 

1. Each sequence can contribute at most one word to the alignment 
2. After each sequence has contributed exactly once to the alignment, sequences can 

contribute additional words to the alignment. 
3. Each sequence can contribute zero or more words to the alignment. 

Hertz and Stormo, Bioinformatics 15 (7): 563. (1999) 
A brute force algorithm would exhaustively build a set of all possible subsequences of length l 
and then recursively add all the other sequences to each one. Finally, we compute the relative 
entropy of each and pick the best.  Guaranteed to be optimal, but exponential time. 
 
Greedy Best-First Approach 
The Greedy Best-First Approach performs one comparison at each iteration – before adding any 
subsequence – to choose only that or those with the best relative entropy. This decreases the 
computational cost of the algorithm (but may miss the optimal solutions). 

Expectation Maximization / MEME 
As in the previous approach, EM (Bailey & Elkan, 1995) shares some of the assumptions and the 
problem is similarly defined: 

• Inputs: The sequences s1, s2, …, sk; the motif, with length l; and the random background 
model 

• Assumptions and constraints as in the Greedy Search, but the model can be varied to 
allow some flexibility, esp. regarding constraint 1. 

• The EM algorithm 
o Visible data – the sequences themselves 
o Hidden data – the location of the motif in the sequences, which we will denote as 
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o Model Parameters (θ): The Weight Matrix Model 
The algorithm proceeds from the original WMM, refining it at every iteration, so each time the 
parameters maximize the likelihood of the observed data. The underlying assumption is that, 
given a few good matches to the best motif, we’ll be able to pick out more with each successive 
refinement of the WMM. 

Expectation Step 

 
Because we assume that the motif can be equally present at any place in the sequence, 
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can be considered constant. 

Maximization Step 
At this step we try to find a WMM (θt) that maximizes the expected value. 
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“The likelihood increases at each iteration, so the procedure will always reach a local (if not 
global) maximum asymptotically.” Note also that we do not need to maximize at each step, as 
long as the likelihood increases from one iteration to the next; this allows us to use numerical 
methods rather than analytical approaches which may be more of a challenge to implement in a 
computer. (Durbin, et al p. 324) 

Initialization of the Algorithm 
1. Try every motif-length substring, and use it as the initial WMM with a predefined 

arbitrary weight for that particular sequence (rest uniform distribution) 
2. Run some iterations for each set 
3. Choose the best few and iterate to convergence. 

The Gibbs Sampler 
We still have the same overarching goal: identify the WMM that maximizes likelihood of the 
given data. However, unlike in previous two algorithms, the probability that a motif is at a  
particular position will be calculated by averaging over probabilities, instead of sampling through 
the sequences. Therefore we are faced with the decision of how to average. Three alternatives: 

1. Direct Integration – rarely solvable analytically 
2. Numerical Integration – unstable, esp. in high dimensions 
3. Monte Carlo Integration – To approximate the expected value of some function f(x), 

where x is distributed according to some probability distribution P, we can use sampling: 
we draw n independent samples x1, x2, …, xn, each distributes according to P and average 
as E(f(x)) ≈ (1/n)*sumi f(xi) 

However, independent sampling is also often hard; luckily it is not required, as we can pick 
subsequent samples from the current one. 

Markov Chain Monte Carlo 
As in the general case, the state of a Markov Chain depends on previous states. For the MCMC, 
we use just the previous state:  Xt+1 ~ P( Xt+1 | Xt ) 
Gibbs Sampling is the most commonly used technique. We count on being able to calculate the 
individual distributions. Then: 

1. Choose a random starting point 
2. Take a random walk through the space (can’t go too far) 
3. At each step we move in only one dimension of the data space and hold other variables 

fixed. By following this procedure, we simplify the computations needed since we 
remove the multidimensional relationships. 

It is true that the samples are not truly independent, but we also expect that more samples will be 
drawn from locations around high probability points. 
The problem is defined as: 

• Inputs: The sequences s1, s2, …, sk; the motif of length l, and the model described by the 
WMM. 

• Same general constraints as in Greedy search 
• Parameters: the locations of the motifs, at x1, x2, …, xk 

We proceed by building, for every sequence si, a WMM from all other sequences, and compute 
the conditional probability of the motif being present in sequence si at position j. At the next step, 
we choose a new location xi based on the probability distribution just obtained. 
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Issues (from lecture slides) 
• Burn-in - how long must we run the chain to reach a stationary state? 
• Mixing - how long a post-burn-in sample must we take to get a good sample of the 

stationary distribution? 

 

Variants and Extensions (from lecture slides) 
• “Phase Shift” - may settle on suboptimal solution that overlaps part of motif. Periodically 

try moving all motif instances a few spaces left or right. 
• Algorithmic adjustment of pattern width: Periodically add/remove flanking positions to 

maximize (roughly) average relative entropy per position 
• Multiple patterns per string 

 


