"RNA sequence analysis using covariance models"

Eddy & Durbin Nucleic Acids Research, 1994 vol 22 #11, 2079-2088

Main Results

- Very accurate search for tRNA
 - (Precursor to tRNAscanSE current favorite)
- Given sufficient data, model construction comparable to, but not quite as good as, human experts
- Some quantitative info on importance of pseudoknots and other tertiary features

What

- A probabilistic model for RNA families
 - The "Covariance Model"
 - ≈ A Stochastic Context-Free Grammar
 - A generalization of a profile HMM
- · Algorithms for Training
 - From aligned or unaligned sequences
 - Automates "comparative analysis"
 - Complements Nusinov/Zucker RNA folding
- · Algorithms for searching

Probabilistic Model Search

- As with HMMs, given a sequence, you calculate llikelihood ratio that the model could generate the sequence, vs a background model
- · You set a score threshold
- Anything above threshold --> a "hit"
- Scoring:
 - "Forward" / "Inside" algorithm sum over all paths
 - Viterbi approximation find single best path (Bonus: alignment & structure prediction)

Comparison to TRNASCAN

- Fichant & Burks best heuristic then
 - 97.5% true positive
 - 0.37 false positives per MB
- CM A1415 (trained on trusted alignment)

Slightly different evaluation criteria

- > 99.98% true positives
- <0.2 false positives per MB
- Current method-of-choice is "tRNAscanSE", a CM-based scan with heuristic pre-filtering (including TRNASCAN?) for performance reasons.

Profile Hmm Structure

Figure 5.2 *The transition structure of a profile HMM.*

- M_j: Match states (20 emission probabilities)
- Ij: Insert states (Background emission probabilities)
- D_j: Delete states (silent no emission)

CM Structure

- A: Sequence + structure
- · B: the CM "guide tree"
- C: probabilities of letters/ pairs & of indels
- Think of each branch being an HMM emitting both sides of a helix (but 3' side emitted in reverse order)

Overall CM Architecture

- One box ("node") per node of guide tree
- BEG/MATL/INS/DEL just like an HMM
- MATP & BIF are the key additions: MATP emits pairs of symbols, modeling base-pairs; BIF allows multiple helices

CM Viterbi Alignment

 $x_i = i^{th}$ letter of input

 x_{ii} = substring i,...,j of input

 $T_{vz} = P(\text{transition } y \rightarrow z)$

 $E_{x_i,x_j}^y = P(\text{emission of } x_i, x_j \text{ from state } y)$

 $S_{ij}^{y} = \max_{\pi} \log P(x_{ij} \text{ generated starting in state } y \text{ via path } \pi)$

$$S_{ij}^{y} = \max_{\pi} \log P(x_{ij} \text{ generated starting in state } y \text{ via path } \pi)$$

$$S_{ij}^{y} = \begin{cases} \max_{z} [S_{i+1,j-1}^{z} + \log T_{yz} + \log E_{x_{i},x_{j}}^{y}] & \text{match pair} \\ \max_{z} [S_{i+1,j}^{z} + \log T_{yz} + \log E_{x_{i}}^{y}] & \text{match/insert left} \\ \max_{z} [S_{i,j-1}^{z} + \log T_{yz} + \log E_{x_{j}}^{y}] & \text{match/insert right} \\ \max_{z} [S_{i,j}^{z} + \log T_{yz}] & \text{delete} \\ \max_{i < k \le j} [S_{i,k}^{y_{left}} + S_{k+1,j}^{y_{right}}] & \text{bifurcation} \end{cases}$$

Mutual Information

$$M_{ij} = \sum_{xi,xj} f_{xi,xj} \log_2 \frac{f_{xi,xj}}{f_{xi}f_{xi}}; \quad 0 \le M_{ij} \le 2$$

- Max when no sequence conservation but perfect pairing
- MI = expected score gain from using a pair state
- Finding optimal MI, (i.e. optimal pairing of columns) is NP-hard(?)
- Finding optimal MI *without pseudoknots* can be done by dynamic programming

MI-Based Structure-Learning

 find best (max total MI) subset of column pairs among i...j, subject to absence of pseudo-knots

$$S_{i,j} = \max \begin{cases} S_{i+1,j} \\ S_{i,j-1} \\ S_{i+1,j-1} + M_{i,j} \\ \max_{i < j < k} S_{i,k} + S_{k+1,j} \end{cases}$$

- · "just like Nussinov/Zucker folding"
- BUT, need enough data---enough sequences at right phylogenetic distance

			score	alignment
Model	training set	iterations	(bits)	accuracy
A1415	all sequences (aligned)	3	58.7	95%
A100	SIM100 (aligned)	3	57.3	94%
A65	SIM65 (aligned)	3	46.7	93%
U100	SIM100 (degapped)	23	56.7	90%
U65	SIM65 (degapped)	29	47.2	91%

Table 2: Training and multiple alignment results from models trained from the trusted alignments (A models) and models trained from no prior knowledge of tRNA (U models).

Pseudoknots disallowed allowed $(\sum_{i=1}^n \max_j M_{i,j})/2$

	Aver	Min	May	ClustalV	1º info	2º info
Dataset				accuracy		(bits)
TEST			1.00		43.7	30.0-32.3
SIM100			.986		39.7	30.5-32.7
SIM65			.685		31.8	28.6-30.7

Table 1: Statistics of the training and test sets of 100 tRNA sequences each. The average identity in an alignment is the average pairwise identity of all aligned symbol pairs, with gap/symbol alignments counted as mismatches. Primary sequence information content is calculated according to [48]. Calculating pairwise mutual information content is an NP-complete problem of finding an optimum partition of columns into pairs. A lower bound is calculated by using the model construction procedure to find an optimal partition subject to a non-pseudoknotting restriction. An upper bound is calculated as sum of the single best pairwise covariation for each position, divided by two; this includes all pairwise tertiary interactions but overcounts because it does not guarantee a disjoint set of pairs. For the meaning of multiple alignment accuracy of ClustalV, see the text.

Rfam – an RNA family DB

Griffiths-Jones, et al., NAR '03,'05

- Biggest scientific computing user in Europe - 1000 cpu cluster for a month per release
- · Rapidly growing:
 - Rel 1.0, 1/03: 25 families, 55k instances
 - Rel 7.0, 3/05: 503 families, >300k instances

Rfam – key issues

- · Overly narrow families
- · Variant structures/unstructured RNAs
- · Spliced RNAs
- · RNA pseudogenes
 - Human ALU is SRP related w/ 1.1m copies
 - Mouse B2 repeat (350k copies) tRNA related
- · Speed & sensitivity
- · Motif discovery

Faster Genome Annotation of Non-coding RNAs Without Loss of Accuracy

Zasha Weinberg & W.L. Ruzzo Recomb '04, ISMB '04

Viterbi/Forward Scoring

- Path π defines transitions/emissions
- Score(π) = product of "probabilities" on π
- NB: ok if "probs" aren't, e.g. ∑≠1 (e.g. in CM, emissions are odds ratios vs 0th-order background)
- For any nucleotide sequence x:
 - Viterbi-score(x) = max{ score(π) | π emits x}
 - Forward-score(x) = Σ { score(π) | π emits x}

Rigorous Filtering

 $\begin{aligned} & P_{AA} \leq L_{A} + R_{A} \\ & P_{AC} \leq L_{A} + R_{C} \\ & P_{AG} \leq L_{A} + R_{G} \\ & P_{AU} \leq L_{A} + R_{U} \\ & P_{A-} \leq L_{A} + R_{-} \end{aligned}$

 Any scores satisfying the linear inequalities give rigorous filtering

Proof:

CM Viterbi path score

- ≤ "corresponding" HMM path score
- ✓ Viterbi HMM path score
 (even if it does not correspond to any CM path)

Some scores filter better

$$\begin{array}{ll} P_{UA} = 1 & \leq L_U + R_A \\ P_{UG} = 4 & \leq L_U + R_G \\ \\ \text{Option 1:} & \text{Opt 1:} \\ L_U = R_A = R_G = 2 & \text{Opt 1:} \\ L_U + (R_A + R_G)/2 = 4 \\ \\ \text{Option 2:} & \text{Opt 2:} \\ L_U = 0, \, R_A = 1, \, R_G = 4 & L_U + (R_A + R_G)/2 = 2.5 \\ \end{array}$$

Calculating $E(L_i, R_i)$

$$E(L_i, R_i) = \sum_{x} Forward-score(x)*Pr(x)$$

 Forward-like: for every state, calculate expected score for all paths ending there, easily calculated from expected scores of predecessors & transition/ emission probabilities/scores

Optimizing filtering

- For any nucleotide sequence x:
 Viterbi-score(x) = max{ score(π) | π emits x }
 Forward-score(x) = Σ{ score(π) | π emits x }
- Expected Forward Score
 E(L_i, R_i) = Σ_{all sequences x} Forward-score(x)*Pr(x)

- NB: E is a function of L_i, R_i only

Under 0th-order background model

Optimization:

Minimize E(L_i, R_i) subject to score L.I.s

- This is heuristic ("forward↓ ⇒ Viterbi↓ ⇒ filter↓")
- But still rigorous because "subject to score L.I.s"

Minimizing E(L_i, R_i)

 Calculate E(L_i, R_i) symbolically, in terms of emission scores, so we can do partial derivatives for numerical convex optimization algorithm

$$\frac{\partial E(L_1, L_2, \dots)}{\partial L_i}$$

Estimated Filtering Efficiency (139 Rfam 4.0 families)

•		,
Filtering	# families	# families
fraction	(compact)	(expanded)
< 10-4	105	110
10-4 - 10-2	8	17
.0110	11	3
.1025	2	2
.2599	6	4
.99 - 1.0	7	3

Results: buried treasures

Name	# found BLAST + CM	# found rigorous filter + CM	# new
Pyrococcus snoRNA	57	180	123
Iron response element	201	322	121
Histone 3' element	1004	1106	102
Purine riboswitch	69	123	54
Retron msr	11	59	48
Hammerhead I	167	193	26
Hammerhead III	251	264	13
U4 snRNA	283	290	7
S-box	128	131	3
U6 snRNA	1462	1464	2
U5 snRNA	199	200	1
U7 snRNA	312	313	1

"Additional work"

- Profile HMM filters use no 2 ary structure info
 - they work well because, tho structure can be critical to function, there is (usually) enough primary sequence conservation to exclude most of DB
 - but not on all families (and may get worse?)
- Can we exploit some structure (quickly)?
 - Idea 1: "sub-CM"
 - for some Idea 2: extra HMM states remember mate
 hairpins
 - Idea 3: try lots of combinations of "some hairpins"
 - Idea 4: chain together several filters

Results: With additional work

	# with BLAST+CM	# with rigorous filter series + CM	# new
Rfam tRNA	58609	63767	5158
Group II intron	5708	6039	331
tRNAscan- SE (human)	608	729	121
tmRNA	226	247	21
Lysine riboswitch	60	71	11

And more...

Heuristic Filters

- · Rigorous filters optimized for worst case
- Possible to trade improved speed for small loss in sensitivity?
- Yes profile HMMs as before, but optimized for average case
- "ML heuristic": train HMM from the infinite alignment generated by the CM
 often 10x faster, modest loss in sensitivity

