“RNA sequence analysis
using covariance models”

Eddy & Durbin

Nucleic Acids Research, 1994
vol 22 #11, 2079-2088

What

+ A probabilistic model for RNA families
— The “Covariance Model”
— = A Stochastic Context-Free Grammar
— A generalization of a profile HMM
+ Algorithms for Training
— From aligned or unaligned sequences
— Automates “comparative analysis”
— Complements Nusinov/Zucker RNA folding

+ Algorithms for searching

Main Results

* Very accurate search for tRNA
— (Precursor to tRNAscanSE - current favorite)

+ Given sufficient data, model construction
comparable to, but not quite as good as,
human experts

« Some quantitative info on importance of
pseudoknots and other tertiary features

Probabilistic Model Search

* As with HMMs, given a sequence, you

calculate llikelihood ratio that the model could

generate the sequence, vs a background
model

* You set a score threshold
+ Anything above threshold --> a “hit”
« Scoring:

— “Forward” / “Inside” algorithm - sum over all paths

— Viterbi approximation - find single best path
(Bonus: alignment & structure prediction)
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Alignment Quality

Trusted:

AcuvCaGUC

CUCAUA

GGeas

GCGGAUUUAGH

UCCGUGAUAGUUUA

AAUGGGCGCUU

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACT

CGCGGGGUGGAGCAGT

Comparison to TRNASCAN

< Fichant & Burks - best heuristic then

— 97.5% true positive <

— 0.37 false positives per MB ko

« CM A1415 (trained on trusted alignment) 2
— >99.98% true positives E}

w

— <0.2 false positives per MB

* Current method-of-choice is ““RNAscanSE”, a
CM-based scan with heuristic pre-filtering
(including TRNASCAN?) for performance
reasons.

evaluation criteria

Profile Hnm Structure

Begin > > M,

Figure 5.2 The rransition structure of a profile HUM.

Mj: Match states (20 emission probabilities)
li  Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)
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CM Viterbi Alignment
x, = i" letter of input S;; =max_ log P(x; generated starting in state y via path )
x,; =substring ..., j of input max_ [S7, ;. +logT +logE; ] match pair
T,, = P(transition y —> z) max [S;,; +logT +logE; ]  match/insert left
y _ z y . .
E? . = P(emission of x,x, from state y) Sy =qmax_[S;, , +logT +logE ]  match/insert right
! o ) max_[S;, +logT, ] delete
S? =max log P(x, generated starting in state y via path ) R o . .
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Model Training

I unaligned sequences ‘
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Mutual Information
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Max when no sequence conservation but
perfect pairing

MI = expected score gain from using a pair
state

Finding optimal M, (i.e. optimal pairing of
columns) is NP-hard(?)

Finding optimal M| without pseudoknots can
be done by dynamic programming

\
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MI-Based Structure-Learning

« find best (max total MI) subset of column pairs
among i...j, subject to absence of pseudo-knots

S

i+l,j

_ i, j-1
S, ; = max g
i+1, j-

max

1+Mi’j
Si+S

i< j<k k+1,j
* “just like Nussinov/Zucker folding”

+ BUT, need enough data---enough sequences at right
phylogenetic distance

Pseudoknots
disallowed allowed (3, max, )2

Avg. Min Max ClustalV 1°info 2° info

Dataset id id id accuracy  (bits)  (bits)
TEST 402 144 1.00  64% 13.7 30.0-32.3
SIM100 .396  .131 986 54% 39.7

SIM65 362 111 .685 37T% 31.8

Table 1: Statistics of the training and test sets of 100 tRNA sequences cach. The average
identity in an alignment is the average pairwise identity of all aligned symbol pairs, with
gap/symbol alignments counted as mismatches. Primary sequence information content is
calculated according to [48]. Calculating pairwise mutual information content is an NP-
complete problem of finding an optimum partition of columns into pairs. A lower bound is
calculated by using the model construction procedure to find an optimal partition subject
to a non-pseudoknotting restriction. An upper bound is calculated as sum of the single best
pairwise covariation for each position, divided by two; this includes all pairwise tertiary
interactions but overcounts because it does not guarantee a disjoint set of pairs. For the

meaning of multiple alignment accuracy of ClustalV, see the text.

score  alignment
Model training set iterations  (bits) accuracy
Al1415  all sequences (aligned) 3 58.7  95%
A100  SIM100 (aligned) 3 573 9%
A6H SIMG65 (aligned) 3 16.7  93%
U100 SIM100 (degapped) 23 56.7  90%
U65 SIM65 (degapped) 29 172 9%

Table 2: Training and multiple alignment results from models trained from the trusted

alignments (A models) and models trained from no prior knowledge of tRNA (U models).

Rfam — an RNA family DB

Griffiths-Jones, et al., NAR ‘03,05

* Biggest scientific computing user in
Europe - 1000 cpu cluster for a month
per release

 Rapidly growing:

—Rel 1.0, 1/03: 25 families, 55k instances

—Rel 7.0, 3/05: 503 families, >300k
instances




Rfam

GUUCCUGCUUCAACAGUGUUUGGAUGGAAC
UUUCUUC . UUCAACAGUGUUUGGAUGGAAC
UUUCCUGUUUCAACAGUGCUUGGA . GGAAC
UUUAUC. . AGUGACAGAGUUCACU . AUAAA
UCUCUUGCUUCAACAGUGUUUGGAUGGAAC
AUUAUC. . GGGAACAGUGUUUCCC . AUAAU
UCUUGC. . UUCAACAGUGUUUGGACGGAAG
UGUAUC. . GGAGACAGUGAUCUCC . AUAUG
AUUAUC. . GGAAGCAGUGCCUUCC . AUAAU
UCUCCUGCUUCAACAGUGCUUGGACGGAGC
UAUAUC. . GGAGACAGUGAUCUCC . AUAUG
UUUCCUGCUUCAACAGUGCUUGAACGGAAC
GUACUUGCUUCAACAGUGUUUGAACGGAAC
UAUAUC. . GGAGACAGUGACCUCC . AUAUG
UAUCUUGCUUCAACAGUGUUUGGACGGAAC

L Input (hand-curated): IRE (partial seed alignment):
— MSA “seed alignment” Hom. sap.
— SS cons Hom. sap.
Hom.sap.
— Score Thresh T Hom. sap.
. Hom. sap.
— Window Len W Hom.sa;
Hom.sap.
+ Output: Hom. sap.
Hom.sap.
- CM Cav.por.
— scan results & “full e mas.
alignment” o
Rat.nor.
Rat.nor.
SS_cons
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Figure 2. Taxonomic distribution of Rfam family members in the three kingdoms of life.

Rfam — key issues

Overly narrow families
Variant structures/unstructured RNAs
Spliced RNAs

RNA pseudogenes
— Human ALU is SRP related w/ 1.1m copies
— Mouse B2 repeat (350k copies) tRNA related

Speed & sensitivity
Motif discovery

Faster Genome Annotation of
Non-coding RNAs Without

Loss of Accuracy

Zasha Weinberg
& W.L. Ruzzo

Recomb ‘04, ISMB ‘04
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CM'’s are good, but slow
Rfam Reality Our Work Rfam Goal
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1 month, ~2 months, 10 years,
1000 computers 1000 computers 1000 computers

Oversimplified CM

(for pedagogical purposes only)
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25 emisions per state 5 emissions per state, 2x states




Key Issue: 25 scores = 10

Viterbi/Forward Scoring

» Path 11 defines transitions/emissions
» Score(1T) = product of “probabilities” on Tt
* NB: ok if “probs” aren’t, e.g. = #1
(e.g. in CM, emissions are odds ratios vs
Oth-order background)
* For any nucleotide sequence x:
— Viterbi-score(x) = max{ score(TT) | TT emits x}
— Forward-score(x) = Z{ score(1T) | TT emits x}
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* Need: log Viterbi scores CM < HMM
Key Issue: 25 scores = 10
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Rigorous Filtering
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» Any scores satisfying the linear
inequalities give rigorous filtering

Proof:
CM Viterbi path score
< “corresponding” HMM path score
< Viterbi HMM path score

(even if it does not correspond to any CM path)




Some scores filter better

Puia=1 = Ly +R,
Pic=4 = Ly +Rg
Assuming ACGU = 25%
Option 1: Opt 1:
Ly=Ry=Rg=2 Ly +(Ry+Rg)2=4
Option 2: Opt 2:
Ly=0,Ry=1,Rg=4 | Ly +(Ry+Rg)2=25

Optimizing filtering

* For any nucleotide sequence x:
Viterbi-score(x) = max{ score(1T) | Tt emits x }
Forward-score(x) = ={ score(Tr) | TT emits x }

+ Expected Forward Score
E(L,R)=Z, sequences x Forward-score(x)*Pr(x) -

— NB: E is a function of L, R; only Under Oth-order
o Optimization: background model

Minimize E(L;, R;) subject to score L.l.s
— This is heuristic (“forward| = Viterbi| = filter|”)
— But still rigorous because “subject to score L.l.s”

Calculating E(L;, R)
E(L, R) = Z, Forward-score(x)*Pr(x)

» Forward-like: for every state, calculate
expected score for all paths ending
there, easily calculated from expected
scores of predecessors & transition/
emission probabilities/scores

Minimizing E(L;, R))

« Calculate E(L;, R;) symbolically, in terms
of emission scores, so we can do partial
derivatives for numerical convex
optimization algorithm

JE(L,,L,...)
JL,

1




Estimated Filtering Efficiency

(139 Rfam 4.0 families)

Results: buried treasures

Filtering # families # families
fraction (compact) | (expanded)

<10+ 105 110
104 -102 8 17
.01-.10 11 3
10-.25 2 2
.25-.99 6 4
.99-1.0 7 3

# found # found # new
Name BLAST rigorous filter
+CM +CM
Pyrococcus snoRNA | 57 180 123
Iron response element | 201 322 121
Histone 3’ element 1004 1106 102
Purine riboswitch 69 123 54
Retron msr 11 59 48
Hammerhead | 167 193 26
Hammerhead IlI 251 264 13
U4 snRNA 283 290 7
S-box 128 131 3
U6 snRNA 1462 1464 2
U5 snRNA 199 200 1
U7 snRNA 312 313 1

“Additional work”

« Profile HMM filters use no 22" structure info

— they work well because, tho structure can be critical

to function, there is (usually) enough primary
sequence conservation to exclude most of DB

— but not on all families (and may get worse?)
+ Can we exploit some structure (quickly)?

— Idea 1: “sub-CM”
— ldea 2: extra HMM states remember mate
— Idea 3: try lots of combinations of “some hairpins”

for some
hairpins

— ldea 4: chain together several filters

Results: With additional work

# with # with rigorous # new

BLAST+CM | filter series + CM
Rfam tRNA | 58609 63767 5158
Group Il 5708 6039 331
intron
tRNAscan- |608 729 121
SE (human)
tmRNA 226 247 21
Lysine 60 71 11
riboswitch

And more...
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Heuristic Filters

Rigorous filters optimized for worst case
Possible to trade improved speed for
small loss in sensitivity?

Yes — profile HMMs as before, but
optimized for average case

“ML heuristic”: train HMM from the
infinite alignment generated by the CM
— often 10x faster, modest loss in sensitivity

Heuristic Filters

(A) (B) (©)
RF00174 RF00005 RF00031
1 = T T
ML-heuristic /)
. 08 b Rigorous HMM#*-—--—//
£, i L BLAST /
E //
2 04 E /4
& ML-heuristic /
02 igorous HMM*----- - /
0 BLAST 7 -
1e-08 1e-06 1e-04 001 1 1e-06 1e-04 0.01 1 1e-08 1e-06 1e-04 0.01 1
Filtering fraction Filtering fraction Filtering fraction

* rigorous HMM, not rigorous threshold

Fig. 1. Selected ROC-like curves. All plot sensitivity against filtering fraction, with filtering fraction in log scale. (A) RF00174 is typical of the other families;
the ML-heuristic is slightly better than the rigorous profile HMM, and both often dramatically exceed BLAST. (B) Atypically, in RF00005, BLAST is superior,
although only in one region. (C) BLAST performs especially poorly for RF00031. (Recall that rigorous scans were not possible for RF00031, so only ~90%
of hits are known; see text.) The supplement includes all ROC-like curves, and the inferior ignore-SS.
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