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How to Average Suppose we have random variables x1, x2, . . . , xn with a p.d.f P (x1, x2, . . . , xk) and a particular
function f(x1, . . . , xk). Now, we want the expected value of f(x) for the given p.d.f., that is:

E(f(x1, x2, . . . , xk)) =
∫

x1

∫
x2

. . .

∫
xk

f(x1, x2, . . . , xk) · P (x1, x2, . . . , xk)dx1dx2 · · · dxk

Analytical solutions are usually difficult or impossibly, and numerical solutions are often unstable, particularly in
high-dimensional problems. Therefore, a Monte Carlo integration approach is sometimes preferable.

To perform Monte Carlo integration, randomly draw n independent samples

~x(1), ~x(2), . . . , ~x(n)

from the distribution and take the average:

E(f(~x)) ≈ 1
n

n∑
i=1

f(~x(i))

As n becomes large we get a good estimate of E(f(x)). Unfortunately, drawing independent samples isn’t always
possible, leading to the MCMC approach.

Markov Chain Monte Carlo (MCMC) Independent sampling is hard in many cases, but not required for expecta-
tion calculations. Instead, we can pick new samples based on the current sample.

x(t+1) ∼ P (x|x(t))

• This is a 1st order Markov Chain - we compute the next step based only on the previous step.

• Samples are not independent but we don’t require independence for our expectation computation.

• Gibbs Sampling approach to MCMC:
Start at a random point in the sample space. Then take a random walk through the space, in a way that reduces
the computation from k-dimensions to a single dimension:

xi ∼ P (xi|x1, x2, . . . , xi−1, xi+1, . . . , xk)

Basically, choose a single dimension at each step, and pick a new value for that dimension by holding all other
variables static and taking a random sample from the marginal distribution of the current value given all the
values of the other components. On average, more sample will be taken around points of high probability.

Using Gibbs for Motif-Finding

• Given k sequences s1, . . . , sk, look for a motif of length w using a WMM model. Assume there is exactly one
motif instance in each sequence, starting at an umknown position.

• Variables x1, . . . , xk represent start locations of the motif in each sequence

• For sequence i we construct WMM using s1, . . . , si−1, si+1, sk and compute probability that motif in si starts
at position j using the ordinary scanning method. We update xi with a position randomly selected according to
that probability.
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Issues with the Gibbs Sampler

• Convergence Time: Unlike EM, there’s no guarantee of improvement with each step. Thus no easy bound on
computation can be derived.

• Burn-in: Theoretically, after a number of iterations the initial point will be “forgotten” and samples will truly
represent the P.D.F. Samples until that point should be discarded, but it’s hard to know where that threshold
should be.

• Mixing: How many samples are needed to cover the space well? How fast do we move between (potentially
many, widely separated) regions of high probability?

Variants and Extensions

• Phase Shift:
In some cases sampler gets slightly off of the motif. So check every 100 iterations or so whether shifting over
gives better results.

• Pattern Width:
Standard approach assumes correct motif length. In this case, periodically adjust number of columns by adding
or removing columns based on relative entropy measurements.

• Multiple Patterns:
Attempt to detect 2 or more motifs in sequence of strings

Graph 1 (See Slides) This graph is from the paper by Lawrence et al, and they use it to demonstrate the success of
the method, compared to random noise.

1. Authors claim this is a typical run. A fast ramp up, followed by slight variations

2. This is an alternative where an initial plateau is reached, and the final result is less than either of the other two,
suggesting an “off-by-one” error

3. This curve has an even longer plateau, but still reaches the same level as Test #1

4. Dotted Line: Represents the control, consisting of generated random sequences that shared the same length and
relative frequencies as the actual sequences used.

The basic claim is that the Gibbs sampling technique works well, as shown by the difference between 1-3 and the
random sequences used as control.
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