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Relative Entropy

Consider distributions P and Q on a sample space Ω. The relative entropy (also known as the Kullback-
Leibler distance/divergence) between P and Q is defined as

H(P‖Q) =
∑
x∈Ω

P (x) log
P (x)
Q(x)

.

When dealing with relative entropy, it is useful to recall the following bounds on natural log:

Figure 1: Bounds on natural log

It is important to note that the relative entropy is non-negative. Although the above sum involves both
positive and negative terms, the factor of P (x) gives the positive terms (those with P (x) > Q(x)) greater
weight than the negative terms (those with P (x) < Q(x)). This may be proved rigorously as follows:

H(P‖Q) =
∑
x∈Ω

P (x) log
P (x)
Q(x)

≥
∑
x∈Ω

P (x)
(

1− Q(x)
P (x)

)
=

∑
x∈Ω

(P (x)−Q(x))

=
∑
x∈Ω

P (x)−
∑
x∈Ω

Q(x)

= 1− 1
= 0.



While H(P‖Q) is often called a distance, the relative entropy is not a metric because it is asymmetric and
does not satisfy the triangle inequality (d(x, y) ≤ d(x, z) + d(z, y)). However, it is true that H(P‖Q) ≥ 0,
and H(P‖Q) = 0 iff P = Q.

Convergence of EM

Recall the quantities we consider for the EM algorithm:

• Visible data x, e.g. the points to be clustered;

• Hidden data y, e.g. which point belongs to which cluster;

• Parameter θ, e.g. description of the various cluster distributions.

The visible data x is fixed. The steps of the algorithm are:

• The E (expectation) step. For fixed parameter θ, we estimate the expected values of the hidden data
y.

• The M (maximization) step. Given expected values of the hidden data y, we find parameter θ to
maximize P (x|θ).

We would like to show a way of executing the M step so that our θ estimates will converge. The outline
below follows the presentation in Durbin, et al. For any y,

log P (x|θ) = log P (x, y|θ)− log P (y|x, θ) (while x is fixed)

=
∑

y

P (y|x, θt) · log P (x, y|θ)︸ ︷︷ ︸
Q(θ|θt)

−
∑

y

P (y|x, θt) · log P (y|x, θ)

Letting Q(θ|θt) =
∑

y P (y|x, θt) · log P (x, y|θ) (the first term on the right), we can rewrite this as

log P (x|θ) = Q(θ|θt)−
∑

y

P (y|x, θt) · log P (y|x, θ).

In general, this equation is extremely difficult to optimize. However, we can simplify our task by attempting
to optimize Q(θ|θt). Subtracting log P (x|θt) from the above equation, we obtain

log P (x|θ)− log P (x|θt) = Q(θ|θt)−Q(θt|θt) +
∑

y

P (y|y, θt) · log
P (y|x, θ)t

P (y|x, θ)︸ ︷︷ ︸
H(P (y|x,θt)‖P (y|x,θ))

.

The last term here is a relative entropy, and thus it is nonnegative. Consequently, we find that

log P (x|θ)− log P (x|θt) ≥ Q(θ|θt)−Q(θt|θt).

So if we find θ that yields a higher value of Q(θ|θt), this will yield a higher value of P (x|θ) as well.
There is no guarantee that this will work out perfectly. For instance, the optimization process may get

stuck at a bad local maximum that is very far from the global maximum. However, we have at least shown
that we obtain some sort of maximum, and issues such as these may be addressed by other means.
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Figure 2: Illustrating the complexity of gene regulation — displaying the TATA box

Sequence Motifs and Weight Matrices

Promoter regions in DNA sequences do not follow a strict pattern. This makes the identification of promoter
regions very difficult. Although promoter regions vary, it is often possible to find a DNA sequence (called the
consensus sequence) to which they are very similar. One such example is the “TATA box,” i.e. a consensus
5’ TATAAT 3’ that is located about 10 bps upstream of the transcription start in E. coli, which is involved
in binding RNA polymerase via a TATA binding protein (TBP). This is analogous to the Pribnow box in
prokaryotes.

Due to the high variability, exact methods cannot be used for identifying promoter regions by the TATA
box. Instead, a pattern search method based on frequencies is used. A table of statistics fb,i can be
constructed, where fb,i is the frequency of the base b in position i of the known promoter region suffixes,
assuming that positions are independent. Furthermore, we let fb denote the expected frequency of the base
b in the genome, i.e. the background probabilities.

Given a sequence S = B1B2B3B4B5B6, the likelihood that it occurs as a TATA-box is given by

P (S|S is a TATA-box) =
6∏

i=1

fBi,i.

On the other hand, the likelihood of sequence S occurring as a “non-promoter” is

P (S|S is not a TATA-box) =
6∏

i=1

fBi
.

Thus, the log-likelihood ratio is

log
(

P (S|promoter)
P (S|non-promoter)

)
= log

(∏6
i=1 fBi,i∏6
i=1 fBi

)
=

6∑
i=1

log
(

fBi,i

fBi

)
From the table fBi,i a scoring matrix can be constructed, with each entry sb,i denoting the score that a
sequence should be given for having the base b in the ith position. The score sb,i is computed by the
following formula:

sb,i = log
(

fb,i

fb

)
.
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Note in particular that sb,i < 0 means that base b has a greater chance of occurring in position i according
to the background probabilities.

This attempt has some major drawbacks because it does not exploit all of the known information, such as
CG-rich regions, introns/exons, and relations between adjacent bases. But on the other hand, these sequence
variations can be considered as a controlling mechanism of expression levels of various genes.

Finally, it can be noted that experiments show ∼80% correlation of log likelihood weight matrix scores
to measured binding energy of RNA polymerase to variations on TATAAT consensus. Thus, one could say
that the promoter region is very conserved.

Which WMM is the best?

Suppose we have a set of sequences assumed to be generated by a WMM. How do we determine which WMM
best describes our data? This is the WMM whose entries are the frequencies-per-position of the bases in our
sample sequences.

Neyman-Pearson Theorem

Suppose we are given a sample x1, x2, . . . , xn from a distribution f(·|θ), and we wish to test hypothesis
θ = θ1 versus θ = θ2. The Neyman-Pearson Theorem states that we lose no information by looking at the
likelihood ratio

f(x1, x2, . . . , xn|θ1)
f(x1, x2, . . . , xn|θ2)

.

Equivalently, we may use the log-likelihood ratio,

log
f(x1, x2, . . . , xn|θ1)
f(x1, x2, . . . , xn|θ2)

= log f(x1, x2, . . . , xn|θ1)− log f(x1, x2, . . . , xn|θ2).

This theorem motivates our use of likelihood ratios in weight matrix models, as well as in many subsequent
discussions.
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