CSE 527 Lecture 10

More on the Gibbs Sampler

Projects

- Suggestion:
 - make a schedule
 - bite-size-pieces
- I'm happy to talk/listen/give (bad?) advice send email
- Motif assessment: http://bio.cs.washington.edu/assessment/

AlignAce (Roth, et al. 1998)

- Lawrence et al.: protein motifs
- Roth et al.: DNA regulatory motifs
- Differences:
 - Genomic background model, e.g. yeast Saccharomyces cerevisiae is 62% A-T
 - both strands used
 - overlapping sites prohibited
 - Multiple motifs: find best & mask
 - "MAP" scoring

Rocke & Tompa (Recomb '98)

- Gibbs, adapted for gapped motifs
- single "genomic" DNA sequence

Why Gaps

- Biology often tolerates diversity
- 2 similar TFs bind 2 similar sites
- Same TF binds 2 sites (perhaps one better than the other)
- Dimeric TFs often "don't care" in middle & flexible
- TF and/or DNA may twist/bulge

A Gapped Motif

0 TAT < CCCCCCTCA C CTTCG G CAGCTCCCCCCATAA
1 ATC < CCCCCCTCA C TTCG G CAGCTCCCCCCATAA
2 GTA < CCCCCCTCAGTCACTTCGCG CAGCTCCCCCCATAA
3 AAT < CCCCCCTCAGTC TTCGCG CAGCTCCCCC TAA

Why gaps are hard

- Alignment

 - Pairwise -- O(n²)
 Multiple -- O(n^k) dynamic programming
 - Gibbs/MEME/... require many alignments
- Scoring

R/T Approach - Scores

- WMM
- Relative entropy, aka expected LLR
- Score gaps like background, "minus a small penalty"

R/T Approach -Alignment

- Gibbs replaces 1 string per iteration
- Use pairwise alignment between new string and previously computed alignment of remaining k-1
- Actually align motif against whole genome -Time O(genome length x motif width)

R/T Approach- "Gibbs"

- discard 0-2 random strings at each iteration
- pick replacement greedily, not by sampling; avoid local max by random restarts (see Rocke's thesis for more on this)

Test Data

- Haemophilus influenzae
- ~1.8 megabases
- Delete all protein-coding, leaves ~ 350 kb
- Concatenate, separated with markers
- Plus reverse complement, total ~ 700 kb

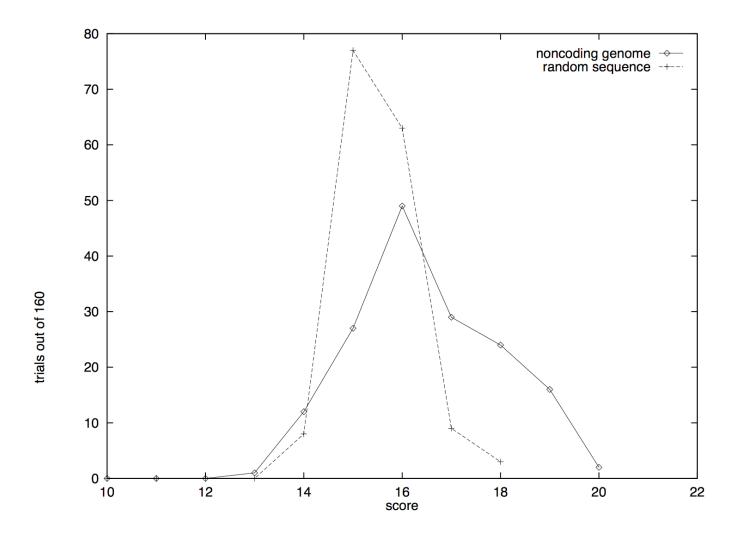


Figure 2: 160 trials of the basic algorithm on the noncoding genome vs. a random sequence

Motif width=10

A Motif + Context

0		<	CGCCCTTTCA	>	
1		<	CGCCCTTTCA	>	
2	AAT	<	CGCCTTTTCA	>	AAA
3	ATC	<	CGCCC-TTCA	>	TGA
4	TTG	<	CGCCC-TTCA	>	CTA
5	AAC	<	CGCCCATTCA	>	ATC
6		<	CGCCC-TTCA	>	CGT
7	TCT	<	CGCCTTTTCA	>	TTG
8		<	CGCCCTTTCA	>	
9		<	CGCCC-TTCA	>	GGG

at	position	118666.
at	position	642660.
at	position	425287.
at	position	330462.
at	position	558509.
at	position	237890.
at	position	495353.
at	position	34553.
at	position	677174.
at	position	222102.

Figure 1: A sample motif (score 16.6) produced by the basic algorit

Rewindowing

- After convergence, "rewindow" -- choose subset of rows and adjust left/right boundaries to maximize score.
- NP-hard? Use another greedy heuristic

Rewindowing

O GGA <	<	CGCCCTTTCA		>	CGG	at	position	118663.
1 GGA <	<	CGCCCTTTCA		>	CGG	at	position	642657.
2 GCT <	<	CGCCC-TTCAC	GGG	>	TTC	at	position	222099.
3 GGA <	<	CGCCCTTTCA		>	CGG	at	position	677171.
4 AAA <	<	CGCCC-TTCAC	CGT	>	AAT	at	position	495350.

Figure 3: The motif of Figure 1 after rewindowing (score 20.8)

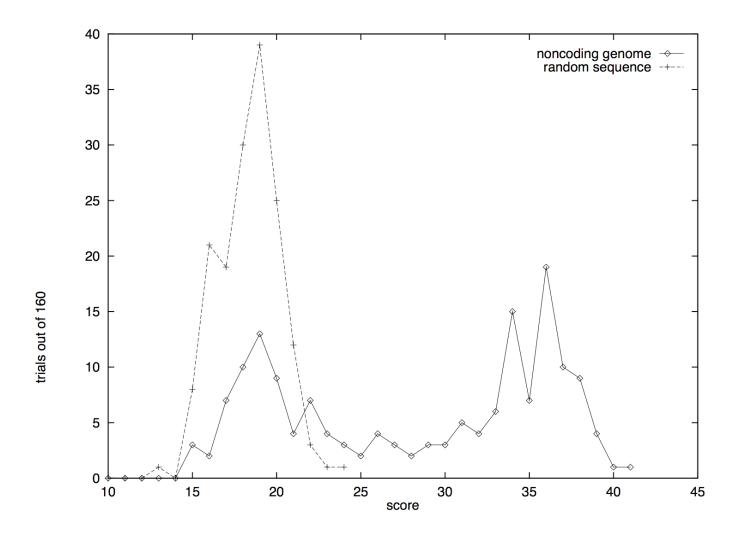


Figure 4: 160 trials of the two-phase algorithm on the noncoding genome vs. a random sequence

A closer look at 35

- 6 almost perfectly identical regions of 5.3 kb, each 3 rRNA genes plus some tRNA genes
- 9% of genome but 50% of high-scoring motifs
- removed 80kb containing them & re-ran

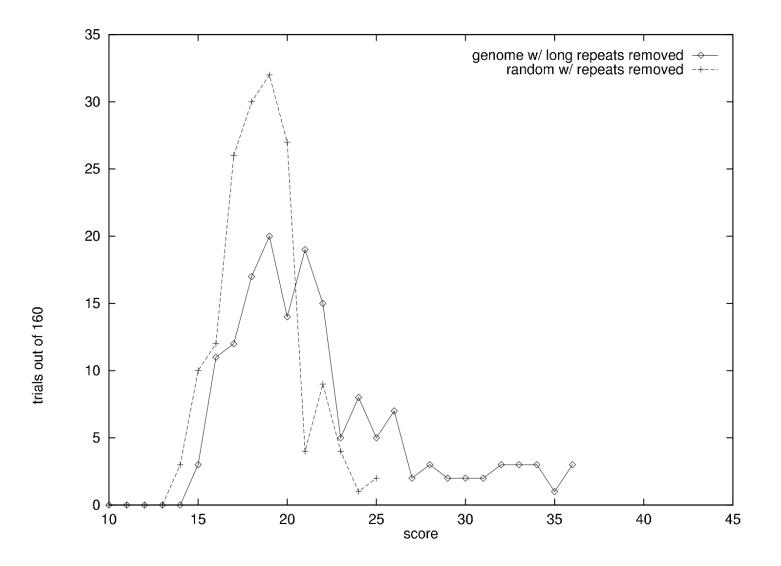


Figure 5: 160 trials of the two-phase algorithm on the noncoding genome with long repeats removed vs. a random sequence

After Removal

- O TCG < GCAGCTCCCCCATAAATGG > GTG
- 1 TCG < GCAGCTCCCCCATAAATGG > GTG
- 2 GCG < ACAGCTCCCCCATAAATGG > GTG
- 3 GCG < CCAGCTCCC-CCGTAAACGG > GTG

- at position 449120.
- at position 448927.
- at position 232857.
- at position 88280.

Figure 6: A sample motif (score 25) produced by two phases

More rewindowing

0 TCG < GCAGCTCCCCCCATAAATGG > GTGat position 449120.1 TCG < GCAGCTCCCCCCATAAATGG > GTGat position 448927.2 GCG < ACAGCTCCCCCCATAAATGG > GTGat position 232857.3 GCG < CCAGCTCCC</td>TAAACGG > GTGat position 88280.

0 TAT < CCCCCCTCA--C-CTTCG-G-CAGCTCCCCCATAAATGGGTGGAGCCAAGAT > TAG at position 449105. 1 ATC < CCCCCCTCA--C--TTCG-G-CAGCTCCCCCCATAAATGGGTGGAGCCAAGAT > TAG at position 448913. 2 GTA < TCCCCCCTCAGTCACTTCGCGACAGCTCCCCCCATAAATGGGTGGAGCCAAGAT > AAT at position 232837. 3 AAT < CCCCCCTCAGTC--TTCGCGCCAGCTCCCCCATCACATGGGTGGAGCCAAGGG > ATC at position 88262.

Figure 7: The motif of Figure 6 after seven phases (score 62)

0 & I identical for another 55 bases;
5 differences in next 44.
Probably not a TFBS, but not "random"

Summary

- Handles gaps
- avoids full multiple alignment by exploiting good partial alignment
- validation null model for comparison
- look at data -
 - rewindowing
 - rRNA cluster