CSE 527
Lectures ~12-13

Markov Models and Hidden Markov Models

Markov & Hidden
Markov Models

® Reference: Durbin, Eddy, Krogh and

Mitchison, “Biological Sequence Analysis”
Cambridge, 1998

Independence

® A key issue: All models we’ve talked about
so far assume independence of nucleotides in
different positions - definitely unrealistic.

Example:“CpG Islands”

® CpG - 2 adjacent nucs, same strand (not Watson-
Crick)

® C of CpG is often methylated (in Eukaryotes)
® Methyl-C mutates to T relatively easily

® Net: CpG is less common than expected genome-
wide: f(CpG) < f(C)*f(G)

® BUT in promoter (& other) regions, CpG remain
unmethylated, so CpG ->TpG less likely there:
makes “CpG Islands”




CpG Islands

e CpG Islands
® More CpG than elsewhere
® More C & G than elsewhere, too
® Typical length: few 100 to few 1000 bp
® Questions
® Given short sequence (say 200 bp), is it a
CpG island or not?
® Given long sequence (say, |10-100kb), fing
CpG islands in it?
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Training

® Max likelihood estimates for transition
probabilities are just the frequencies of
transitions when emitting the training
sequences

[ s UCHVed (WO Markov Chialll models, one for the regions labelled as CpG is-

lands (the ‘+’ model) and the other from the remainder of the sequence (the ‘—"
model). The transition probabilities for each model were set using the equation

ct

st 1 =]
2 -
and its analogue for a;;, where c; is the number of times letter ¢ followed letter
§ in the labelled regions. These are the maximum likelihood (ML) estimators for
the transition probabilities, as described in Chapter 1.
q ? C( 6 (In this case there were almost 60 000 nucleotides, and ML estimators are ade-
quate. If the number of counts of each type had been small, then a Bayesian es-
i l,f‘*' timation process would have been more appropriate, as discussed in Chapter 11

i
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and below for HMMs.) The resulting tables are e » %
: L“" £ C G T o © G T
A 0180 0274 0426 0.120 A 0300 0.205 0.285 0.210
c 0171 0368 0274 0.188 Cc 0322 0298+ 0.078 0.302
o
G 0161 0339 0375 0.125 G 0248 0246 0208 0.208
T 0079 0355 0384 0.182 T 0177 0239 0292 0.292

where the first row in each case contains the frequencies with which an 2 is
followed by each of the four bases, and so on for the other rows, so each row
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les the probability for G following C is lower than that for C following G,
1the effect is stronger in the ‘—’ table, as expected.
e these models for discrimination, we calculate the log-odds ratio
I x
P(x|model +) Ay 1x
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is the sequence and f,,_,, are the log likelihood ratios of corresponding
n probabilities. A table for B is given below in bits:!

B A e G T

A —0.740 0419 0580 —0.803
c -—0913 0302 1.812 -0.685
G —0.624 0461 0331 -0.730
T —I.169 0573 0393, —0.679

: 3.2 shows the distribution of scores, S(x), normalised by dividing by
gth, i.e. as an average number of bits per molecule. If we had not nor-
by length, the distribution would have been much more spread out.

-0.4
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Bits

Figure 3.2 The histogram of the length-normalised scores Sor all the se-
quences. CpG islands are shown with dark grey and non-CpG with light

grey.
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3.2 Hidden Markov models 57

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFF FFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LL‘LLj-'_pFFFF?Pb‘}.}‘?FFLLLLLLLL\:I[JL‘LLL:—AL‘LLEJ:\I‘LLLLL‘LL‘A[JI/LLLFFFF‘.’.:‘.F.F

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFF "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFEFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

the model as described earlier. Each roll was generated either with the fair die
(F) or the loaded one (L), as shown below the outcome of the roll in Figure 3.5.
The Viterbi algorithm was used to predict the state sequence, i.e. which die was
used for each of the rolls. Generally, as you can see, the Viterbi algorithm has
recovered the state sequence fairly well. O
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Viterbi Traceback

® Above finds probability of best path

® To find the path itself, trace backward to
state k attaining the max at each stage

Yet to come

® More on HMMs:
® Viterbi, forward, backward
® Posterior decoding
® Training: Viterbi & Baum-Welch

® Model structure
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3.2 Hidden Markov models 57

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL,
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFPFFFFFFFFFFPLLLLLLLLLLLL

Rolls 651166453132551245636664531635663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLL LLLLLLLLLFFFFFEFF

Rolls 22255544166556656356432036413151]465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LL-LLLLLLFFFFFFFFFPFF?FFFFFFFFFPFPFFFFFFFPFFFP’FFFFFFFFFFI"FFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFEFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

the model as described earlier. Each roll was generated either with the fair die
(F) or the loaded one (L), as shown below the outcome of the roll in Figure 3.5.
The Viterbi algorithm was used to predict the state sequence, i.e. which die was
used for each of the rolls. Generally, as you can see, the Viterbi algorithm has
recovered the state sequence fairly well. o

Exercise

60 3 Markov chains and hidden Markov models

P(fair)

0 50 100 150 200 0 300

Figure 3.6 The posterior probability of being in the state corresponding to
the fair die in the casino example. The x axis shows the number of the roll.
The shaded areas show when the roll was generated by the loaded die.

The first approach is to define a state sequence #; that can be used in place of
bLei

#; = argmax P(m; = k|x). (3.15)
k

As suggested by its definition, this state sequence may be more appropriate when
we are interested in the state assignment at a particular point i, rather than the
complete path. In fact, the state sequence defined by #; may not be particularly
likely as a path through the entire model; it may even not be a legitimate path at
all if some transitions are not permitted, which is normally the case.

The second, and perhaps more important, new decoding approach arises when
it is not the state sequence itself which is of interest, but some other property
derived from it. Assume we have a function g(k) defined on the states. The
natural value to look at then is

il = 8P Plar, — lvrmiln moae
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E le: The occasionally dish

t casino, part 5

We are suspicious that a casino is operated as described in the example on p. 54,
but we do not know for certain. Night after night we collect data by simply ob-
serving rolls. When we have enough, we want to estimate a model. Assume the
data we collected were the 300 rolls shown in Figure 3.5. From this sequence of
observations a model was estimated by the Baum-Welch algorithm. Initially all
the probabilities were set to random numbers. Here are diagrams of the model
that generated the data (identical to the one in the example on p. 54) and the esti-
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the parameters exactly.

You can see they are fairly similar, although the estimated transition probabilities
are quite different from the real ones. This is partly a problem of local minima,
and by trying more times it is actually possible to obtain a model closer to the cor-
rect one. However, from a limited amount of data it is never possible to estimate

To illustrate the last point, 30 000 random rolls were generated (data are not




66 3 Markov chains and hidden Markov models

shown!), and a model was estimated. This came very close to the correct one:
0.93 0.88

fD Learned
&

1: 07 1

5 g::; |2 g 0.10 MOdeI

4: 017 4: 011

< e (30,000 rolls)
Fair Loaded

To see how good these models are compared to just assuming a fair die all the
time, the log-odds per roll was calculated using the 300 observations for the three
models:

The correct model 0.101 bits

Model estimated from 300 rolls 0.097 bits

Model estimated from 30000 rolls  0.100 bits )
The worst model estimated from 300 rolls has almost the same log-odds as the
two other models. That is because it is being tested on the same data as it was

estimated from. Testing it on an independent set of rolls yields significantly lower
log-odds than the other two models. m|

Exercises
315! Derive the result (3.19). Use the fact that

1
P(m; =k, mipq =1|x,8) = WP(LH.' =k, w1 =116),
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Helix AAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCCCCC

HBA_HUMAN --------- VLSPADKTNVKAAWCGKVGA - ~-HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN -------— VHLTPEEKSAVTALWGKV - - - -NVDEVGGEALGRLLVVYPWTQRFFESF
MYG_PHYCA ~VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF

GLB3_CHITP LSADQISTVQASFDKVKG------ DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU ======-~ GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI =======-- GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus LS.... vaWwkv. . g . L.. £, P. F F
Helix DDDDDDDEEEEEEEEEEE FFFFFFFFFFFF

HBA_HUMAN -DLS§----- HGSAQVKGHGKKVADALTNAVAHV - - -D- - DMPNALSALSDLHAHKL-

HBB_HUMAN GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL- --D--NLKGTFATLSELHCDKL~
MYG_PHYCA KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-
GLB3_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
GLBS_PETMA KGLTTADQLKKSADVRWHAERT INAVNDAVASM-- DDTEKMSMKLRDLSGKHAKSF -
LGB2_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAATQLOVTGVVVTDATLKNLGSVHVSKG-

GLB1_GLYDI SG----AS-- »DPGVAALGAKVLAQIGVAVSHL- -GDEGKMVAQMKAVGVRHKGYGN
Consensus t A .Hg kv. a a...1 d .al.l H
Helix FFGGGGGGGGGGGEGGGGGGEGE HHHHHHHHHHHHHHHHHHHHHHHHHH

HBA_HUMAN -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR-
HBB_HUMAN -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-
MYG_PHYCA -~KIPIKYLEFISEATI IHVLHSRHPGDFGADAQGAMKALELFRKDIAAKYKELGYQG
GLB3_CHITP --VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM--
GLB5_PETMA -QVDPQYFKVLAAVIADTVAAG-======== DAGFEKLMSMICILLRSAY--
LGB2_LUPLU --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA--—
GLB1_GLYDI KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS--——--
Consensus V. i R £ . aa. k. . 1 sky

Figure 5.1 An alignment of seven globins from Bashford, Chothia &
Lesk [1987]. To the left is the protein identifier in the SWISS-PROT
database [Bairoch & Apweiler 1997]. The eight alpha helices are shown as
A~H above the alignment. A consensus line below the alignment indicates
residues that are identical among at least six of the seven sequences in upper
case, ones identical in four or five sequences in lower case, and positions
where there is a residue identical in three sequences with a dot.

Profile Hmm Structure

\ 4
\J

Begin > —»| M End

Figure 5.2 The transition structure of a profile HMM. We use diamonds 1o
indicate the insert states and and circles for the delete states.

Mij: Match states (20 emission probabilities)
li  Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)
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Likelihood vs Odds Scores
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Figure 5.5 To the left the length-normalized LL score is shown as a function
of sequence length. The right plot shows the same for the log-odds score.

Z-score from LL

Z-Scores
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Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).
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