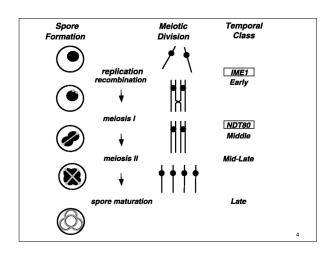
A Case Study -- Chu et al.

- An interesting early microarray paper
- My goals
 - Show arrays used in a "real" experiment
 - Show where computation is important
 - Start looking at analysis techniques

The Transcriptional Program of Sporulation in Budding Yeast


S. Chu, * J. DeRisi, * M. Eisen, J. Mulholland, D. Botstein, P. O. Brown, I. Herskowitz

Science, 282 (Oct 1998) 699-705

What is Sporulation?

- Under adverse conditions, one yeast cell transforms itself into "spores" -- tetrad of cells with tough cell wall, goes "dormant"
- Yeast is ordinarily diploid; spores are haploid. I.e., genetically, sporulation is analogous to formation of egg/sperm in most sexual organisms -- 2 rounds of meiotic (not mitotic) cell division.
 - And many of the genes/proteins involved in this are recognizably similar to human genes/proteins

.

The Chu et al. Experiment

- Measure mRNA expression levels of all 6200 yeast genes in 7 time points (0-11 hours) in a (loosely synchronized) sporulating yeast culture
- Compare level at time t to level at time 0 on 2-color cDNA array
- Plus some more standard tests as controls

Standard Test (Northern) vs Array

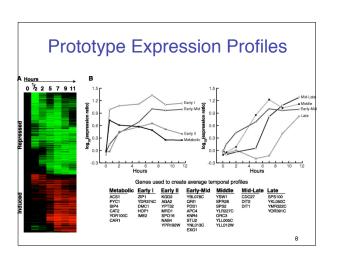
A Hours: 0 2 5 6 7

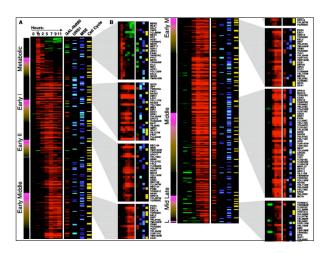
B

Hours: 0 .5 2 5 7 9 11

DMC1

SPS1


Hours: 0 2 5 6 7 9 11


SPS100

Repressed Induced

>20 10x 3x | 3x 10x >20

1:1

"Sporulation" Summary, I

- What they did:
 - measured mRNA expression levels of all 6200 yeast genes in 7 time points in a (loosely synchronized) sporulating yeast culture
 - plus some more standard tests as controls
- What they learned:
 - 3-10x increase in number of genes implicated in various subprocesses
 - several subsequently verified by direct knockouts
 - further evidence for significance of some known transcription factors and/or binding motifs
 - several potential new ones
 - evidence for existence of others

10

"Sporulation" Summary, II

- Where computation fits in
 - automated sample handling
 - image analysis
 - data storage, retrieval, integration
 - visualization
 - clustering
 - sequence analysis
 - similarity search
 - motif discovery
 - structure prediction

More on these topics later in the course

11

More on Computation

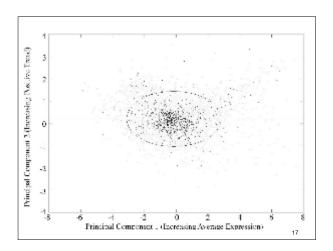
- Similarity Search -- given a loosely defined sequence "motif", e.g. a transcription factor binding site, scan genome for "matches"
 - "Which genes have an MSE element?"
 - E.g., weight matrix models, Markov models
- Motif discovery -- given a collection of sequences presumed to contain a common pattern, e.g. a transcription factor binding site, find it & characterize it
 - "What motifs are common to Early Middle genes?"
 - E.g., MEME, Gibbs Sampler, Footprinter, ...

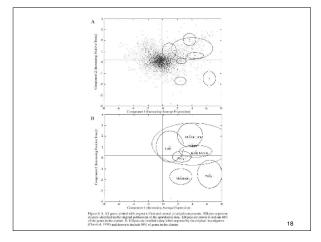
12

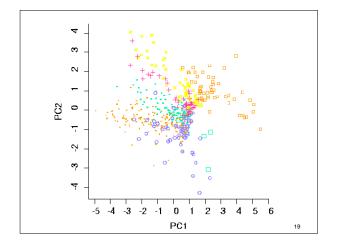
More on Computation

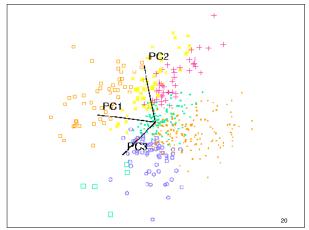
- Finding groups of sequences that plausibly contain common sequence motifs
 - E.g., clustering (co-varying because coregulated?)

Chu's "Supervised" Clustering


- Hand picked ~ 40 prototype genes
 - With significant variation in data set
 - With known function
- Hand-segregated into 7 groups ("Early", ...)
- Assign all others to "nearest" group
 - Based on Pearson correlation to per-group averages of prototypes
- For visualization, order within groups by correlation to neighboring groups


Critique


2 warnings about arrays & clusters


- Warning 1: expression data often do not separate into nice, compact, wellseparated clusters
 - Cf Raychaudhuri et al. (next 2 slides)
- Warning 2: it's hard to visualize highdimensional data & inadequate visualization may obscure as well as enlighten
 - Cf last 2 slides.

16

