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RNA - a quick review
 RNA’s primary structure is

sequence of nucleotides
(A,C,G,U)

 folds back on itself by
binding stable base pairs
 Folded structure is RNA’s

secondary structure

 Secondary structure is the
main determinant of
functionality



RNA analysis

 2 classes of RNA analysis problems:
 Predict secondary structure of an RNA

sequence
 Create a model/profile of RNA family from a

multiple alignment for:
 Aligning new sequences to the profile
 Searching databases for homologous RNAs that match

the profile

 Solution methods based on probabilistic
models of RNA secondary structure



Project Outline

 Literature review of probabilistic methods:

 Stochastic Context-Free Grammars (SCFGs)
 SCFGs + evolutionary history (Pfold)
 SCFGs for detecting noncoding RNAs

 Pair-SCFGs
 Algorithmic speedups for Pair-SCFGs

 SCFG design considerations

 Covariance Models
 Brief overview of non-probabilistic methods



RNA analysis using
stochastic context-free
grammars

Sakakibara et al., stochastic context-free
grammars for tRNA modeling, 1994

S --> LS --> CS --> CL -->
CAFU --> CAGFCU --> … --
> CAGUUCU

Derivation/Parse-Tree of
Sequence CAGUUCU
from SCFG:

RNA SCFG:

production rulenonterminal
terminal s ∈{A,C,G,U}

= paired bases Key: parse trees <=> secondary 
structure



SCFG algorithms (DP-based)

 Secondary structure prediction
 CYK algorithm

 Given RNA sequence s and SCFG, find most likely
secondary structure of s?  Find most likely parse-tree of
s

 Likelihood of a sequence
 Inside algorithm

 Probability that s is generated by SCFG?  Similar to CYK

 Search database for homologous RNAs
 Score subsequences using Inside or CYK

 Log-odds or Z-scores



SCFG algorithms (DP-based)

 SCFG parameter estimation
 Inside-Outside algorithm

 EM style procedure from training sequences

 Time cubic in length of training sequences

 Tree-Grammer EM training algorithm
 Faster, but needs initial structural alignments

of RNAs in family



Paper’s results
 Trained 4 grammars on 1477 tRNA sequences

 Generated multiple alignments using grammars on
known EMBLtRNA alignments
 99% base-pairs matched known alignment
 83% for “Part III” class of sequences (mitochondrial tRNA

lacking D-domain)

 Inside algorithm generated Z-scores to discriminate
tRNAs from non-tRNAs
 Good discrimination except for Part III group



Discussion

 SCFG-based techniques are effective

 SCFGs don’t model introns, insertions and
deletions
 Necessary for real-life profiles for DNA-level

database searches

 Paper doesn’t explicitly discuss database
search methods



RNA analysis using
covariance models (CMs)

Eddy et al., RNA sequence analysis
using covariance models, 1994

 CMs based on “guide tree:”
 Binary tree where nodes correspond to

columns in input multiple alignment

 Models consensus structure of RNA family



CM guide trees

Guide tree
- equivalent to parse
  tree of a SCFG!
- nodes = paired-bases

Consensus structure
of RNA family

G-C pair
Bifurcation 
node

Unpaired A

End node



CM intuition

 Model variations in emitted bases
 Nodes emit bases (pairs) probabilistically

 Model variations in structure
 Nodes replaced with state machines
 States for emitting pairs, unmatched pairs,

inserts, deletions, etc.
 States connected via transition probabilities



CM example
 Nodes expanded to state

machines

 Ex: Pairwise node
 Many states

 MATP - emit a matched base-
pair

 MATR - emit right base of a
base-pair

 INSR - insert unmatched right
base

 DEL - emit nothing, thus
delete a base

 …

node



CM algorithms

 Align RNA sequence to CM, calculate
alignment score
 Inside algorithm for CMs

 Key difference: uses “Viterbi assumption”
 prob[CM emits sequence] ~= Prob[Viterbi alignment]

 Basis for all other CM algorithms

 Search database for homologous RNAs
 Score subsequences using Inside



CM algorithms

 CM Training - find CM that maximizes
likelihood of generating training seqs
 Given initial alignment
 Estimate CM structure using “mutual information”

 How correlated are 2 columns in the alignment?
 DP algorithm finds tree with consensus secondary

structure that maximizes correlation information

 Use EM to optimize CM’s parameters
 Align each training sequence to CM

 Re-estimate new CM structure
 Repeat until convergence



Paper’s results
 Construct 3 CMs from 1415 aligned tRNAs

 Use CMs to create alignments for test set of
sequences
 93% correct alignments
 90-92% correct using unaligned training seqs!

 Database search compared to TRNASCAN
 99.8% true positives, <0.2 false positives/Megabase

 Tertiary structure information adds only ~2-3 bits of
correlation information
 Tertiary info not crucial for database searching?



Discussion

 CMs are alternate formalism of SCFGs
 But allow for insertions, deletions relative

to consensus

 SCFGs - ungapped models, CMs - gapped
models

 CMs are to SCFGs as profile-HMMs
are to match-state-only HMMs



Taking phylogeny into account
Knudsen and Hein, RNA secondary structure prediction

using stochastic context-free grammars and
evolutionary history, 1999

Knudsen and Hein, Pfold: RNA secondary structure
prediction using stochastic context-free grammars,
2003

 Idea: combine info from phylogenetic tree of
sequences into SCFGs to improve secondary
structure prediction



SCFGs + phylogenetic trees

 Goal: given RNA seqs structural
alignment + phylogenetic tree, produce
consensus secondary structure

 2 part model from initial alignment:
 SCFG - Inside-Outside training
 Mutational/evolutionary model

 Matrices of estimated mutation rates between
all bases X and Y and pairs XY and X’Y’



Algorithms

 Prob[Alignment | Tree, Model]
 Needs column probs in alignment

 Calculated from mutation rates + tree

 Extend view of grammar as generating
columns in the alignment

 Apply CYK algorithm to new grammar

 ML estimate of tree if not given
 Assumes input tree topology



Paper’s results
 Build KH-99 model from tRNA and LSU rRNA

database
 Mutation rates estimated from counts in database alignment
 SCFG parameters estimated using Inside-Outside

 Apply model to predict structure of 4 bacterial Pnase
P RNA sequences
 Accuracy improves with # of sequences
 Phylogenetic info adds ~5% accuracy

 Compared results to CMs
 Comparable results using less input sequences



Pfold

 Improvements to previous method
 faster
 More robust to initial alignment errors
 Tree estimation faster (scraps ML)
 Use alternative algorithm to CYK

 Results
 Pfold implementation - still used today!
 Similar results, but faster
 More evolutionary distance yields better accuracy



Detecting noncoding RNAs
(ncRNAs)
Rivas and Eddy, Secondary structure alone is generally

not statistically significant for the detection of
noncoding RNAs, 2000

Rivas and Eddy, Noncoding RNA gene detection using
comparative sequence analysis, 2001

 ncRNA genes contain less statistical signal than
protein-coding genes

 How do probabilistic methods function with this weak
signal?



Methods and results

 Try #1 - scan genome using SCFG model
 Detection b/c of C-G composition bias, not b/c of

structural signal

 Try #2 - scan pairwise alignment of genomes
using Pair-SCFG model
 identify regions with patterns of mutations that

suggest a conserved secondary structure
 Problem: need structurally aware initial alignment
 Soln: re-align genomes to model…too slow!



Speeding up Pair-SCFG
algorithms
Holmes and Rubin, Pairwise RNA structure comparison

with stochastic context-free grammars, 2002

 Speed up CYK and Inside for Pair-SCFGs
 Assumes guess at secondary structure of

alignment
 Constrain DP algorithms to only consider pairs of

subsequences consistent with structure
 Calculates “fold envelopes” - set of OK

subsequences

 In best case, can lead to linear time CYK and Inside
implementations!



SCFG design considerations
Dowell and Eddy, Evaluation of several lightweight

stochastic context-free grammars for RNA
secondary structure prediction, 2004

 Develops a number of small SCFGs and analyzes
their prediction accuracy
 Tradeoff between grammar size and accuracy

 Knudsen and Hein’s Pfold grammar performs best!

 One-to-one correspondence between sequences
and parse trees key to proper functioning of CYK
algorithm
 “structural ambiguity”



Non-probabilistic methods
 Minimum Free Energy (MFE) methods

 Best structure minimizes free energy of all bonds
 Mfold and RNAfold
 Many techniques for incorporating comparative sequence

analysis
 “gold-standard” for RNA secondary structure prediction

 Maximum Weighted Matchings
 Graph: vertices are bases in sequence, edges with weights

from thermodynamic info
 Max weight matching <=> secondary structure
 Can predict tertiary interactions!



Summary
 Looked at original papers on SCFG-based and CM-

based RNA analysis methods

 Extensions to SCFG models to consider
phylogenetic information

 Considered harder problem of detecting ncRNAs

 Briefly looked at SCFG design considerations

 Overview of non-probabilistic methods


