An Overview of Probabilistic Methods for RNA Secondary Structure Analysis

> David W Richardson CSE527 Project Presentation 12/15/2004

RNA - a quick review

- RNA's primary structure is sequence of nucleotides (A,C,G,U)
- folds back on itself by binding stable base pairs
 - Folded structure is RNA's secondary structure
- Secondary structure is the main determinant of functionality

RNA analysis

• 2 classes of RNA analysis problems:

- Predict secondary structure of an RNA sequence
- Create a model/profile of RNA family from a multiple alignment for:
 - Aligning new sequences to the profile
 - Searching databases for homologous RNAs that match the profile
- Solution methods based on probabilistic models of RNA secondary structure

Project Outline

Literature review of probabilistic methods:

- Stochastic Context-Free Grammars (SCFGs)
 - SCFGs + evolutionary history (Pfold)
 - SCFGs for detecting noncoding RNAs
 - Pair-SCFGs
 - Algorithmic speedups for Pair-SCFGs
 - SCFG design considerations
- Covariance Models
- Brief overview of non-probabilistic methods

KINA analysis using stochastic context-free grammars

Sakakibara et al., *stochastic context-free* grammars for tRNA modeling, 1994

Derivation/Parse-Tree of Sequence CAGUUCU from SCFG:

S --> LS --> CS --> CL --> CAFU --> CAGFCU --> ... --> CAGUUCU

Key: parse trees <=> secondary structure

SCFG algorithms (DP-based)

Secondary structure prediction

- CYK algorithm
 - Given RNA sequence s and SCFG, find most likely secondary structure of s? Find most likely parse-tree of s
- Likelihood of a sequence
 - Inside algorithm
 - Probability that s is generated by SCFG? Similar to CYK
- Search database for homologous RNAs
 - Score subsequences using Inside or CYK
 - Log-odds or Z-scores

SCFG algorithms (DP-based)

SCFG parameter estimation

Inside-Outside algorithm

- EM style procedure from training sequences
- Time cubic in length of training sequences
- Tree-Grammer EM training algorithm
 - Faster, but needs initial structural alignments of RNAs in family

Paper's results

- Trained 4 grammars on 1477 tRNA sequences
- Generated multiple alignments using grammars on known EMBLtRNA alignments
 - 99% base-pairs matched known alignment
 - 83% for "Part III" class of sequences (mitochondrial tRNA lacking D-domain)
- Inside algorithm generated Z-scores to discriminate tRNAs from non-tRNAs
 - Good discrimination except for Part III group

Discussion

- SCFG-based techniques are effective
- SCFGs don't model introns, insertions and deletions
 - Necessary for real-life profiles for DNA-level database searches
- Paper doesn't explicitly discuss database search methods

RNA analysis using covariance models (CMs)

Eddy et al., *RNA sequence analysis* using covariance models, 1994

- CMs based on "guide tree:"
 - Binary tree where nodes correspond to columns in input multiple alignment
 - Models consensus structure of RNA family

CM guide trees

Consensus structure of RNA family

Guide tree

- equivalent to parse tree of a SCFG!
- nodes = paired-bases

CM intuition

- Model variations in emitted bases
 - Nodes emit bases (pairs) probabilistically
- Model variations in structure
 - Nodes replaced with state machines
 - States for emitting pairs, unmatched pairs, inserts, deletions, etc.
 - States connected via transition probabilities

CM example

- Nodes expanded to state machines
- Ex: Pairwise node
 - Many states

...

- MATP emit a matched basepair
- MATR emit right base of a base-pair
- INSR insert unmatched right base
- DEL emit nothing, thus delete a base

CM algorithms

- Align RNA sequence to CM, calculate alignment score
 - Inside algorithm for CMs
 - Key difference: uses "Viterbi assumption"
 - prob[CM emits sequence] ~= Prob[Viterbi alignment]
 - Basis for all other CM algorithms
- Search database for homologous RNAs
 - Score subsequences using Inside

CM algorithms

- CM Training find CM that maximizes likelihood of generating training seqs
 - Given initial alignment
 - Estimate CM structure using "mutual information"
 - How correlated are 2 columns in the alignment?
 - DP algorithm finds tree with consensus secondary structure that maximizes correlation information
 - Use EM to optimize CM's parameters
 - Align each training sequence to CM
 - Re-estimate new CM structure
 - Repeat until convergence

Paper's results

- Construct 3 CMs from 1415 aligned tRNAs
- Use CMs to create alignments for test set of sequences
 - 93% correct alignments
 - 90-92% correct using unaligned training seqs!
- Database search compared to TRNASCAN
 - 99.8% true positives, <0.2 false positives/Megabase
- Tertiary structure information adds only ~2-3 bits of correlation information
 - Tertiary info not crucial for database searching?

Discussion

- CMs are alternate formalism of SCFGs
 - But allow for insertions, deletions relative to consensus
 - SCFGs ungapped models, CMs gapped models
- CMs are to SCFGs as profile-HMMs are to match-state-only HMMs

Taking phylogeny into account

Knudsen and Hein, RNA secondary structure prediction using stochastic context-free grammars and evolutionary history, 1999

Knudsen and Hein, *Pfold: RNA secondary structure prediction using stochastic context-free grammars*, 2003

 Idea: combine info from phylogenetic tree of sequences into SCFGs to improve secondary structure prediction

SCFGs + phylogenetic trees

- Goal: given RNA seqs structural alignment + phylogenetic tree, produce consensus secondary structure
- 2 part model from initial alignment:
 - SCFG Inside-Outside training
 - Mutational/evolutionary model
 - Matrices of estimated mutation rates between all bases X and Y and pairs XY and X'Y'

Algorithms

- Prob[Alignment | Tree, Model]
 - Needs column probs in alignment
 - Calculated from mutation rates + tree
 - Extend view of grammar as generating columns in the alignment
 - Apply CYK algorithm to new grammar
- ML estimate of tree if not given
 - Assumes input tree topology

Paper's results

- Build KH-99 model from tRNA and LSU rRNA database
 - Mutation rates estimated from counts in database alignment
 - SCFG parameters estimated using Inside-Outside
- Apply model to predict structure of 4 bacterial Pnase P RNA sequences
 - Accuracy improves with # of sequences
 - Phylogenetic info adds ~5% accuracy
- Compared results to CMs
 - Comparable results using less input sequences

Pfold

- Improvements to previous method
 - faster
 - More robust to initial alignment errors
 - Tree estimation faster (scraps ML)
 - Use alternative algorithm to CYK
- Results
 - Pfold implementation still used today!
 - Similar results, but faster
 - More evolutionary distance yields better accuracy

Detecting noncoding RNAs (ncRNAs)

Rivas and Eddy, Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs, 2000

Rivas and Eddy, *Noncoding RNA gene detection using* comparative sequence analysis, 2001

- ncRNA genes contain less statistical signal than protein-coding genes
- How do probabilistic methods function with this weak signal?

Methods and results

- Try #1 scan genome using SCFG model
 - Detection b/c of C-G composition bias, not b/c of structural signal
- Try #2 scan pairwise alignment of genomes using Pair-SCFG model
 - identify regions with patterns of mutations that suggest a conserved secondary structure
 - Problem: need structurally aware initial alignment
 - Soln: re-align genomes to model...too slow!

Speeding up Pair-SCFG algorithms

Holmes and Rubin, *Pairwise RNA structure comparison* with stochastic context-free grammars, 2002

- Speed up CYK and Inside for Pair-SCFGs
 - Assumes guess at secondary structure of alignment
 - Constrain DP algorithms to only consider pairs of subsequences consistent with structure
 - Calculates "fold envelopes" set of OK subsequences
- In best case, can lead to linear time CYK and Inside implementations!

SCFG design considerations

Dowell and Eddy, *Evaluation of several lightweight* stochastic context-free grammars for RNA secondary structure prediction, 2004

- Develops a number of small SCFGs and analyzes their prediction accuracy
 - Tradeoff between grammar size and accuracy
 - Knudsen and Hein's Pfold grammar performs best!
- One-to-one correspondence between sequences and parse trees key to proper functioning of CYK algorithm
 - "structural ambiguity"

Non-probabilistic methods

- Minimum Free Energy (MFE) methods
 - Best structure minimizes free energy of all bonds
 - Mfold and RNAfold
 - Many techniques for incorporating comparative sequence analysis
 - "gold-standard" for RNA secondary structure prediction
- Maximum Weighted Matchings
 - Graph: vertices are bases in sequence, edges with weights from thermodynamic info
 - Max weight matching <=> secondary structure
 - Can predict tertiary interactions!

Summary

- Looked at original papers on SCFG-based and CMbased RNA analysis methods
- Extensions to SCFG models to consider phylogenetic information
- Considered harder problem of detecting ncRNAs
- Briefly looked at SCFG design considerations
- Overview of non-probabilistic methods