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RNA - a quick review

= RNA's primary structure is
sequence of nucleotides
(A,C,G,U)

= folds back on itself by
binding stable base pairs

= Folded structure is RNA's
secondary structure

= Secondary structure is the
main determinant of
functionality



i RNA analysis

= 2 classes of RNA analysis problems:

= Predict secondary structure of an RNA
sequence

= Create a model/profile of RNA family from a
multiple alignment for:
Aligning new sequences to the profile

Searching databases for homologous RNAs that match
the profile

= Solution methods based on probabillistic
models of RNA secondary structure



Project Outline

= Literature review of probabilistic methods:

= Stochastic Context-Free Grammars (SCFGs)
« SCFGs + evolutionary history (Pfold)

=« SCFGs for detecting noncoding RNAs
Pair-SCFGs
Algorithmic speedups for Pair-SCFGs

« SCFG design considerations
= Covariance Models
= Brief overview of non-probabilistic methods
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Sakakibara et al., stochastic context-free
grammars for tRNA modeling, 1994

RNA SCFG: Derivation/Parse-Tree of
@ R LE L Sequence CAGUUCU
. from SCFG:
F —xsFs| LS
L — s\ sF's S->LS->CS->CL->
\ /‘ | CAFU --> CAGECU --> ... -
nonterminal production rule > CAGUUCU
terminal s €{A,C,G,U}
SS = paired bases Key: parse trees <=> secondary

structure



SCFG algorithms (DP-based)

= Secondary structure prediction

= CYK algorithm

= Given RNA sequence s and SCFG, find most likely
secondary structure of s? Find most likely parse-tree of
S

= Likelihood of a sequence

= Inside algorithm
= Probability that s is generated by SCFG? Similar to CYK

= Search database for homologous RNAs

= Score subsequences using Inside or CYK
« Log-odds or Z-scores



i SCFG algorithms (DP-based)

s SCFG parameter estimation

= Inside-Outside algorithm
=« EM style procedure from training sequences
= Time cubic in length of training sequences

» Tree-Grammer EM training algorithm

« Faster, but needs initial structural alignments
of RNAs in family




Paper's results

= [rained 4 grammars on 1477 tRNA sequences

= Generated multiple alignments using grammars on
known EMBLtRNA alignments

= 99% base-pairs matched known alignment

= 83% for “Part llI” class of sequences (mitochondrial tRNA
lacking D-domain)

= Inside algorithm generated Z-scores to discriminate
tRNAs from non-tRNAs

= Good discrimination except for Part Il group



i Discussion

s SCFG-based techniques are effective

s SCFGs don’'t model introns, insertions and
deletions

= Necessary for real-life profiles for DNA-level
database searches

= Paper doesn't explicitly discuss database
search methods



RNA analysis using

i covariance models (CMs)

Eddy et al., RNA sequence analysis
using covariance models, 1994

= CMs based on “guide tree:”

= Binary tree where nodes correspond to
columns in input multiple alignment

=« Models consensus structure of RNA family



CM guide trees
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i CM intuition

= Model variations in emitted bases
= Nodes emit bases (pairs) probabilistically

= Model variations in structure
= Nodes replaced with state machines

» States for emitting pairs, unmatched pairs,
iInserts, deletions, etc.

= States connected via transition probabilities



CM example

= Nodes expanded to state

machines

= EX: Pairwise node
= Many states

/

= MATP - emit a matched base-

pair

= MATR - emit right base of a

base-pair

= INSR - insert unmatched right

base

« DEL - emit nothing, thus

delete a base
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i CM algorithms

= Align RNA sequence to CM, calculate
alignment score
« Inside algorithm for CMs

= Key difference: uses “Viterbi assumption”
« prob[CM emits sequence] ~= Prob[Viterbi alignment]

= Basis for all other CM algorithms

= Search database for homologous RNAs
= Score subsequences using Inside



CM algorithms

= CM Training - find CM that maximizes
likelihood of generating training seqgs

= Given initial alignment

= Estimate CM structure using “mutual information”
= How correlated are 2 columns in the alignment?

=« DP algorithm finds tree with consensus secondary
structure that maximizes correlation information

= Use EM to optimize CM’s parameters
= Align each training sequence to CM

= Re-estimate new CM structure
= Repeat until convergence



Paper's results

= Construct 3 CMs from 1415 aligned tRNAs

= Use CMs to create alignments for test set of
sequences
= 93% correct alignments
= 90-92% correct using unaligned training seqs!

= Database search compared to TRNASCAN

= 99.8% true positives, <0.2 false positives/Megabase

= Tertiary structure information adds only ~2-3 bits of
correlation information
= Tertiary info not crucial for database searching?



i Discussion

= CMs are alternate formalism of SCFGs

= But allow for insertions, deletions relative
to consensus

» SCFGs - ungapped models, CMs - gapped
models

= CMs are to SCFGs as profile-HMMs
are to match-state-only HMMs



i Taking phylogeny into account

Knudsen and Hein, RNA secondary structure prediction
using stochastic context-free grammars and
evolutionary history, 1999

Knudsen and Hein, Pfold: RNA secondary structure

prediction using stochastic context-free grammars,
2003

= |ldea: combine info from phylogenetic tree of
sequences into SCFGs to improve secondary
structure prediction




i SCFGs + phylogenetic trees

= Goal: given RNA seqs structural
alignment + phylogenetic tree, produce
consensus secondary structure

= 2 part model from initial alignment:
» SCFG - Inside-Outside training

= Mutational/evolutionary model

= Matrices of estimated mutation rates between
all bases X and Y and pairs XY and XY’



i Algorithms

= Prob[Alignment | Tree, Model]

= Needs column probs in alignment
= Calculated from mutation rates + tree

»« Extend view of grammar as generating
columns in the alignment

= Apply CYK algorithm to new grammar

= ML estimate of tree if not given
= Assumes input tree topology



Paper's results

= Build KH-99 model from tRNA and LSU rRNA
database

= Mutation rates estimated from counts in database alignment
= SCFG parameters estimated using Inside-Outside

= Apply model to predict structure of 4 bacterial Pnase
P RNA sequences
= Accuracy improves with # of sequences
= Phylogenetic info adds ~5% accuracy

= Compared results to CMs
= Comparable results using less input sequences



i Pfold

= |Improvements to previous method
= faster
= More robust to initial alignment errors
= Tree estimation faster (scraps ML)
=« Use alternative algorithm to CYK

= Results
=« Pfold implementation - still used today!
= Similar results, but faster
= More evolutionary distance yields better accuracy



Detecting noncoding RNAs

i (ncRNAS)

Rivas and Eddy, Secondary structure alone is generally
not statistically significant for the detection of
noncoding RNAs, 2000

Rivas and Eddy, Noncoding RNA gene detection using
comparative sequence analysis, 2001

= NCRNA genes contain less statistical signal than
protein-coding genes

= How do probabilistic methods function with this weak
signal?



i Methods and results

= Try #1 - scan genome using SCFG model

= Detection b/c of C-G composition bias, not b/c of
structural signal

= Try #2 - scan pairwise alignment of genomes
using Pair-SCFG model

« identify regions with patterns of mutations that
suggest a conserved secondary structure

= Problem: need structurally aware initial alignment
= Soln: re-align genomes to model...too slow!



Speeding up Pair-SCFG

i algorithms

Holmes and Rubin, Pairwise RNA structure comparison
with stochastic context-free grammars, 2002

= Speed up CYK and Inside for Pair-SCFGs

= Assumes guess at secondary structure of
alignment

= Constrain DP algorithms to only consider pairs of
subsequences consistent with structure

= Calculates “fold envelopes” - set of OK
subsequences

= In best case, can lead to linear time CYK and Inside
iImplementations!



i SCFG design considerations

Dowell and Eddy, Evaluation of several lightweight
stochastic context-free grammars for RNA
secondary structure prediction, 2004

= Develops a number of small SCFGs and analyzes

their prediction accuracy
= Tradeoff between grammar size and accuracy
= Knudsen and Hein’s Pfold grammar performs best!

= One-to-one correspondence between sequences
and parse trees key to proper functioning of CYK
algorithm
= ‘structural ambiguity”



Non-probabilistic methods

= Minimum Free Energy (MFE) methods
= Best structure minimizes free energy of all bonds
= Mfold and RNAfold

= Many techniques for incorporating comparative sequence
analysis

= ‘gold-standard” for RNA secondary structure prediction

= Maximum Weighted Matchings

= Graph: vertices are bases in sequence, edges with weights
from thermodynamic info

= Max weight matching <=> secondary structure
= Can predict tertiary interactions!



i Summary

= Looked at original papers on SCFG-based and CM-
based RNA analysis methods

s Extensions to SCFG models to consider
phylogenetic information

= Considered harder problem of detecting ncRNAs
= Briefly looked at SCFG design considerations

= Overview of non-probabilistic methods



