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Abstract

Biologists typically try to solve two important classes
of RNA analysis problems: (1) predicting the secondary
structure of a given RNA sequence, and (2) analyzing
multiple alignments of families of related RNAs to create
a structure profile useful for searching databases for ho-
mologous RNAs and for aligning RNA sequences to the
profile.

In this paper, we provide a literature review of some
of the most important papers on standard probabilistic
methods for solving these two classes of problems.

1 Introduction

RNA is a polymer composed of four necleotides: ade-
nine, cytosine, guanine, and uracil, abbreviated as A, C,
G, and U. As in DNA, these nucleotides form comple-
mentary, hydrogen-bonded Watson-Crick base pairs be-
tween A-U and G-C, where uracil replaces thymine (T)
from DNA. The G-C base pair is more stable than the
A-U base pair because of an additional hydrogen bond.
While there are 16 possible base-pairings, only 6 (A-U,
G-U, G-C, U-A, U-G, C-G) are stable enough to form
pairs. The rest of the unstable pairs are known as ”mis-
matches.”

Because RNA is a single-stranded molecule, it tends
to fold back on itself by binding together stable base
pairs. This resulting folded structure is called thesec-
ondary structureof the RNA. An example RNA se-
quence and its secondary structure is shown in figure 1.
Standard terminology defines astemas a region of con-
tiguously stacked base pairs, and aloop as a region of
unpaired bases bounded on both ends by paired bases.

It turns out that the secondary structure of RNA tends
to be more important to RNA functionality than its pri-
mary sequence of nucleotides. In fact, base substitutions
in the primary sequence can oftentimes be made as long
as the secondary structure remains intact. As a result,
analysis of RNA tends to be more complicated than DNA
sequence analysis. There are two important classes of

Figure 1: An example secondary structure of an RNA
molecule [1]. Stem and loop regions are labeled, along with
different types of base pairs.

RNA analysis problems that biologists typically try to
solve:

1. Predicting the secondary structure of a given RNA
sequence.

2. Analyzing multiple alignments of families of re-
lated RNAs to create a structure profile useful for
searching databases for homologous RNAs and for
aligning RNA sequences to the profile.

In this paper, we provide a literature review of some
of the most important papers on standard probabilis-
tic methods for solving these two classes of problems.
In particular, we consider the use of Covariance Mod-
els (CMs) [4] and Stochastic Context-Free Grammars
(SCFGs) [12]. After reviewing the original papers in
these areas, we look at an extension to SCFG-based
methods that incorporates evolutionary history to in-
crease the accuracy of the analysis [8]. This method-
ology has led to an important RNA analysis tool, Pfold
[9]. We then discuss a number of papers that con-
sider the analysis of noncoding RNAs [10] through what
are called Pair-Stochastic Context-Free Grammars (Pair-
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SCFGs) [11], [7]. Finally, we look at a paper that ad-
dresses how to design appropriate SCFGs [2], and we
conclude by providing a very brief overview of common
non-probabilistic methods for the interested reader.

Throughout the paper, we occasionally refer to the ex-
cellent explanations found in the standard book on the
subject of biological sequence analysis [3]. This book is
highly recommended for anyone interested in RNA se-
quence analysis.

2 RNA Analysis Using Stochastic Context-
Free Grammars

In this section, we examine the original paper of
Sakakibara et al. [12] that applied SCFGs to the
problems of folding, aligning, and discriminating fam-
ilies of tRNA sequences. This paper does not address
how to build profiles necessary for searching DNA-level
databases for homologous RNAs. This is certainly pos-
sible with SCFG-based models, but we’ll see in the next
section a related formalism that better deals with this
modeling issuse.

2.1 SCFGs

The paper begins by first providing definitions for
SCFGs and related terminology. Agrammar, or more
accurately, acontext-free grammaris composed of 3 dis-
tinct parts: (1) A finite alphabetΣ of terminalsymbols.
The terminal symbols for RNA sequences are simply
those in the alphabet A, C, G, and U. (2) A setN of
nonterminal symbolsS1...SN with a special start sym-
bol S0. (3) A set ofproductionsP that define how to
replace nonterminal symbols with a new subsequence.
The language represented by the grammar is the set of
all sequences of terminals that can be derived from the
grammar by repeatedly applying production rules to ex-
pand nonterminals starting from the nonterminalS0.

A derivation is a sequence of grammar production
rules used to derive a given sequence of terminals from
S0. A parse treevisualizes a derivation as a syntactic
tree-like structure, where the root node of the tree isS0,
and internal nodes correspond to intermediary sequences
encountered in the derivation. Leaf nodes correspond to
sequences of terminals found as subsequences in the de-
rived sequence. A given sequence may have multiple
valid parse trees. If some sequence has more than one
parse tree, the grammar is considered to beambiguous.
The reader is referred to any standard introductory text
on the theory of computation for more details.

A SCFG defines probability values for each produc-
tion rule in the grammar. Therefore, a SCFG defines a
probability distribution over all possible sequences that
can be generated by the grammar.

SCFGs can represent RNA sequences having a com-
mon secondary structure by defining productions that can
be classified into 4 types:S → aSa describes base
pairs (for example,S → ASU defines an A-U base
pair), S → aS andS → Sa describe unpaired bases,
S → S describes deletions in the RNA sequence, and
S → SS describes branched secondary structures. So
for example if we have a SCFG that generates the se-
quence CAGCU according to the derivationS ⇒ CS ⇒
CASU ⇒ CAGCU , this derivation would correspond
to a secondary structure whereby the A-U and G-C are
paired to form a stem, and the first C is unpaired into an
unstructured single strand. This derivation, and therefore
the secondary structure of CAGCU are easily identified
by looking at the sequence’s parse tree.

As we’ve seen, a parse tree for a given RNA sequence
defines a particular derivation and therefore corresponds
to that sequence’s predicted RNA secondary structure.
This correspondence between parse trees and RNA sec-
ondary structure is key to SCFG-based analysis methods.

For the algorithms presented in this paper, the au-
thors assume that the SCFGs are in a special restricted
form, calledChomsky normal form(CNF). Grammars
in this form only have production rules of the form
Wv → WyWz or Wv → a. It turns out that any grammar
can be rewritten in CNF with appropriate modifications.
While all of the algorithms in this paper rely upon the
grammars being in CNF, there are variants of the algo-
rithms that work on more general grammar forms. Some
of these are discussed in [3].

2.2 Secondary Structure Prediction

The first problem the authors solve is how to use
SCFGs to predict secondary structure. More formally,
given an RNA primary sequences and a SCFGG that
models the RNA family ofs, we want to predict the most
likely secondary structure ofs. Since parse trees ofs
represent secondary structures, this problem is reduced
to finding the most likely parse tree fors.

Finding the most likely parse tree fors can be
solved using the Cocke-Younger-Kasami (CYK) algo-
rithm. Let’s say that the sequences hasL symbols,
indexedx1, ..., xL. Suppose the SCFG in CNF hasM
nonterminalsW = W1, ..., WM with start nonterminal
W1. We let v, y, and z be indices for nonterminalsWv,
Wy, andWz . The probability parameters of the SCFG
are denoted astv(y, z) to specify the transition probabil-
ity of the production ruleWv → WyWz , and asev(a)
to specify the emission probability of the production rule
Wv → a. The CYK algorithm uses dynamic program-
ming to calculate the variableγ(i, j, v) which equals the
log probability of the most likely parse subtree rooted at
the nonterminalWv for the subsequencexi, ..., xj of s
for all i,i, and v. At the end of the calculation,γ(1, L, 1)
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holds the log probability of the most likely parse tree
of s. The initialization and recurrences for calculating
γ(i, j, v) are given below:

Initialize: for i=1 to L, v=1 to M:

γ(i, j, v) = logev(xi)

Recurrence: for i=1 to L-1, j=i+1 to L, v=1 to M:

γ(i, j, v) = maxy,zmaxk=i...j−1

{γ(i, k, y) + γ(k + 1, j, z) + logtv(y, z)}

By incorporating a traceback variable into this proce-
dure, a simply traceback algorithm can then be applied
to recover the most likely parse tree ofs [3].

With the CYK algorithm, once can also produce a
multiple, structural alignment of RNA sequences. If we
define a ”match” nonterminal as a nonterminal symbol
that derives either a letter or two base-paired letters in the
consensus structure of the RNA family being modeled,
then match nonterminals correspond to columns in the
multiple alignment where the match nonterminal’s let-
ters appear in the consensus structure. For each sequence
in the alignment, simply calculate that sequence’s most
likely parse tree. Then print the sequence in such a way
that letters derived from match nonterminals are placed
in their appropriate columns in the alignment.

2.3 Likelihood of a Sequence

To calculate the likelihood or probability that a given
sequences is generated by the model SCFG, one must
sum up all of the probabilities of all possible parse trees
of s that can be generated by the grammar. The algo-
rithm for doing this is known as the Inside algorithm. It
is very similar to the CYK algorithm, but replaces the
max terms with sum terms in the recurrence to calculate
variablesα(i, j, v) equal to the probability of a parse sub-
tree rooted at nonterminalWv for a subsequencexi, ...xj

of s for all i, j, and v.
The authors show that by taking the -log of this prob-

ability, they get thenegative log likelihood(NLL) score
of s being generated by the grammar. This score is nor-
malized to produce a Z-score that is suitable for thresh-
olding to determining whether or not a given sequence
belongs to the family of RNA sequences represented by
the SCFG model.

The authors fail to mention that the Inside algorithm
(or for that matter the CYK algorithm) can be used to
scan over large genomes to score all subsequences of
length≤ w. The dynamic programming algorithm cal-
culates the Z-score for each subsequence (or alterna-
tively the log-odds score) to determine whether or not
the sequence is a match to the SCFG model. Therefore,
both the Inside algorithm and the CYK algorithm can be

used as a basis for searching for homologous RNAs in
a genome database. A nice example of such a scanning
algorithm is discussed in [10].

2.4 SCFG Parameter Estimation

Finally, the authors provide an expectation-
maximization type algorithm known as the Inside-
Outside algorithm for estimating the probability
parameters of a SCFG from a set of training sequences.
This algorithm makes use of an algorithm called the
Outside algorithm that calculates variablesβ(i, j, v)
equal to the summed probability of all parse trees ex-
cluding subtrees rooted at nonterminalWv that generates
subsequencexi, ...xj . The outside algorithm uses the
α(ij, v) values calculated by the Inside algorithm [3].

After calculatingα(i, j, v) andβ(i, j, v) values, one
can use EM to re-estimate the parameters of the SCFG.
This procedure essentially calculates the expected num-
ber of timesc(v) that a given nonterminalWv is used in a
derivation, and the expected number of timesc(v → yz)
that the production ruleWv → WyWz is used from non-

terminalWv in a derivation. The value c(v)
c(v→yz) is the re-

estimation of the transition probabilitytv(y, z). A simi-
lar procedure can be applied to re-estimate probabilities
for theWv → a production rules.

The authors note that the standard Inside-Outside al-
gorithm takes time cubic in the length of each training
sequence. As a result, they develop a faster, modified
version of the Inside-Outside algorithm, known as the
Trree-Grammar EM training algorithm. This algorithm
however requires folded RNA sequences (not just the
RNA sequence) as training examples.

2.5 Results

The authors apply their new EM-style training algo-
rithm to a database of 1477 tRNA sequences to pro-
duce four grammars. They then used these grammars to
perform 3 tasks: discriminate tRNAs from non-tRNAs,
produce multiple sequence alignments, and predict sec-
ondary structures of new RNA sequences.

The generated multiple alignments for each of the
four grammars were compared to a known alignment
called EMBLtRNA. The results indicate that for the best
trained grammar, upwards of 99% of base pairs specified
by the EMBLtRNA alignment were also matched in the
alignment made by the grammar. However, one particu-
lar class of tRNAs showed only 83% matching accuracy.
The authors note that the majority of such non-matching
RNAs were parasitic worm and mammalian mitochon-
drial tRNA that lack a specific domain known as the D-
domain. This group of tRNAs was referred to as Part III.

To assess the accuracy of discriminating tRNAs from
non-tRNAs, the authors compute Z-scores for all tested
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tRNA sequences and non-tRNA sequences using the nor-
malized NLL score mentioned previously. A Z-score
threshold of 5 was set to discriminate tRNAs from non-
tRNAs. Once again, very good discrimination was
achieved except for the Part III sequence group.

2.6 Discussion

This paper showed that SCFG-based techniques for
the analysis of RNA can be effective. The authors note
though that their method is unable to create a good
enough model necessary for searching databases at the
DNA-level to find homologous RNAs. We mentioned
that such a scanning algorithm could be constructed us-
ing either the Inside algorithm or the CYK algorithm as a
basis for scoring subsequences. However, the grammars
should ideally be modified to allow for introns and inser-
tions and deletions of bases. Allowing for insertions and
deletions turns out to be very important for modeling any
real RNA families.

The next paper we consider uses a related model
known as a Covariance Model (CM) that is a closely re-
lated formalism to SCFGs. However, CMs allow for in-
sertions and deletions of bases, thus making them better
suited for use in scanning algorithms.

3 RNA Analysis Using Covariance Models

In this section, we look at a paper by Sean Eddy and
Richard Durbin [4] that develops probabilistic models
known ascovariance models(CM) for performing RNA
consensus secondary structure prediction, multiple se-
quence alignment, and database similarity searching.

This paper surfaced at nearly the same time as the
paper on SCFGs we previously discussed. The model
and techniques are essentially a different formalism for
SCFGs-based analysis. However, unlike the SCFGs we
saw in [12], the covariance models in [4] can account for
insertions and deletions of bases necessary for provid-
ing a more accurate model of an RNA family suitable for
performing databases searches for homologous RNAs.

3.1 Covariance Models

The basic idea behind a covariance model is straight-
forward. A CM is based on a binary tree that describes
both the primary sequence and secondary structure of a
single RNA. Suppose we are given an RNA sequence and
its secondary structure. We can model this sequence and
its structure by using a tree-like state machine. There are
nodes that correspond to emitting unparied nucleotides,
and nodes for emitting paired nucleotides. Special ”bi-
furcation” nodes represent junctions between multiple
helices in the secondary structure. Given such a tree, you
simply walk the tree from root to leaves and left to right
to get the RNA’s primary sequence. Paired nucleotides

Figure 2: An example RNA structure along with its or-
dered binary tree description from the original paper.

in the secondary structure correspond to pairs emitted by
the corresponding node in the tree. This idea is analo-
gous to emitting nested pairs in a context-free grammar.
In fact, these trees are nothing more than parse trees for
the derivation of an RNA sequence from a SCFG. An
example of such a binary tree is shown in figure 2.

However, as was the case with parse trees for SCFGs,
such binary trees can only describe a fixed RNA struc-
ture. In general we want to model a family of RNA se-
quences and their structure; that is, we want a profile of
an RNA family. A given family of RNAs will exhibit
a consensus secondary structure. However, individual
homologous RNAs will likely differ from the consensus
profile in different ways. To model these variations, we
need to allow for the possibility of insertions, deletions,
and mismatched base-pairs with respect to the consensus.
If we view a binary tree as modeling the consensus struc-
ture of the RNA family, then these trees are like ”guide
trees” where nodes correspond to columns in a trusted
multiple alignment.

To model variations in emitted bases, nodes in the
guide tree can be modified to emit bases and base-pairs
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probabilistically. To accommodate variations in structure
relative to the consensus, nodes are replaced with a num-
ber of statesthat correspond to different structures that
can be emitted by the node. For example, a node might
be replaced by a ”match” state, an ”insert” state, and a
”delete” state. A match state corresponds to the proba-
bilistic emission of a matched base-pair, where an insert
state corresponds to the probabilistic emission of an un-
matched (inserted) base.

States are connected to each other viatransition prob-
abilities. Therefore, each node is essentially expanded
into a small state machine which can make transitions
within itself or to a child node, emitting bases and base-
pairs probabilistically. These expanded-node state ma-
chines allow for changes in secondary structure relative
to the consensus structure specified by the initial guide
tree. The resulting probabilistic model is known as aco-
variance model.

We note that there are many node types possible in a
CM, each of which can expand into many different states
with varying transitions. Some of these node types along
with their accompanying states are listed below:

1. left singlet node- this node corresponds to the top
2 ”A o -” nodes in the binary tree of figure 2. This
node has 3 possible states with emission probabil-
ities on letters: MATL (match left), INSL (insert
left), and DEL (delete). These states correspond to
the various ways that a single letter could be emitted
with no ”right” match from this node. This is why
it is called a left singlet node.

2. right singlet node- this is the dual of a left singlet
node.

3. bifurcation node- this node corresponds to a junc-
tion between multiple helices in the secondary
structure. The node has 2 children nodes, each of
which are transitioned to with probability 1.

4. pairwise node- this node has a special ”match” state
which emits 16 possible base-pairs, each with some
probability. This corresponds to a base pairing in
the RNA secondary structure. There are also MATL
and MATR states corresponding to when part of the
base-pair match is missing. Other states such as
INSL and DEL are also possible in this node.

5. beginandendnodes - these are special nodes that
mark the beginning and end of a helix.

An example of a CM showing these nodes and states
is shown in figure 3. This figure is also directly lifted
from the original paper.

To use these models, we have to set up a specific
model structure for an RNA family and then assign prob-
abilities to the model’s parameters. Doing so defines a

Figure 3: An example of a covariance model showing the
different node types and state types.

probability distribution on primary sequences and sec-
ondary structures modeled by the CM.

3.2 Alignment

All of the analysis for CMs rely on the basic algorithm
for aligning a given RNA sequence to a CM and calculat-
ing this alignment’s probability score. Multiple sequence
alignments are then performed by aligning sequences
one-by-one to the CM. Model training essentially opti-
mizes model parameters and structure so that training se-
quences are assigned high alignment scores by the result-
ing model. Secondary structure prediction is easily de-
rived from looking at which bases are assigned to which
match states in an alignment. Finally, database search-
ing for homologous RNAs is accomplished by looking
for database subsequences with the highest alignment
scores.

The CM alignment algorithm is oftentimes referred
to as the Inside algorithm, and is a variant of the In-
side algorithm for SCFGs. Let’s suppose that the RNA

5



sequencex to be aligned hasL symbols denoted as
x1, ..., xL, and that the CM hasM states. This algo-
rithm uses a 3-dimensional dynamic programming al-
gorithm to calculate the valuesSi,j,y which are the log
likelihoods of alignments of subsequences ofx from
1 ≤ xi...xj ≤ L to subtrees of the CM beginning in state
y where1 ≤ y ≤ M . The states of the CM are num-
bered from the root such that children states of a given
state always have higher indices than their parent state
via preorder traversal.

The initialization and recurrence for calculating the
Si,j,y are broken down into cases depending on what
type of statey happens to be. EachSi,j,y is the sum
of three numbers: (1) the symbol emission log proba-
bility for emitting a given symbol(s) at state y in either
locationi and/orj, (2) the state transition log probabil-
ity of transitioning to a given child stateynext of y, and
(3) the scoreSi′,j′,ynext

for subsequencei′...j′ for child
stateynext which is found via recursion. The actual re-
currences are messy and are given on page 2081 in the
paper [4].

At the end of the algorithm,S1,L,1 contains the score
of the entire sequence’s alignment. The alignment can be
reconstructed by tracing back through the dynamic pro-
gramming matrix and at each-state, following the max-
score path. This Inside algorithm takes time cubic in the
size of the sequence L and time linear in the size of the
CM.

The key difference between this alignment algorithm
and the Inside algorithm used for SCFGs-based analysis
is that the CM alignment algorithm uses what is called
the ”Viterbi assumption.” This assumes that the proba-
bility that the CM emits a given sequence is equal to the
probability of the best alignment of the sequence to the
model, ie the Viterbi alignment. The accuracy of this
assumption hinges on whether or not the single Viterbi
alignment dominates the sum of all possible alignments
permitted by the model.

3.3 CM Training

The authors then present an algorithm for training a
CM to a set of training sequenes. Given a set of train-
ing sequences, a training algorithm finds the CM which
maximizes the likelihood of generating those sequences.
Training actually involves two processes: estimating pa-
rameters of a given CM and determining an optimal
structure of a CM.

Given a model structure, the training algorithm esti-
mates the parameters for the CM via EM using the align-
ment algorithm on each training sequence to construct an
optimal alignment to the current model. Re-estimates of
transition and emission probabilities are calculated based
on frequencies of observed state transitions and symbol
emissions. This alignment of sequences to calculate new

model parameters is repeated until the parameters con-
verge to a local optimum.

But how do you define the original structure of the
model? While this problem remains a bit of a black art
(as it is with HMMs), the authors propose the follow-
ing solution that uses the notion ofmutual information.
Given an alignment of the training sequences, mutual in-
formation calculates the amount of information we gain
about the letter in column i of the alignment if we know
the identify of the letter in column j. Iffxi is the fre-
quency of nucleotidex in columni of the alignment, then
we define the mutual information of column i and j as:

Mij =
∑

xi,xj

fxi,xj ∗ log2
fxi,xj

fxi ∗ fxj

(1)

wherefxi,xj is the joint (pairwise) frequency of one of
the sixteen possible base pairs observed in columns i and
j. Basically,Mij measures how much the joint frequency
distribution deviates from the distribution expected if the
two columns i and j varied independently. For RNA,Mij

varies between 0 and 2 bits.Mij is maximal if columns i
and j appear completely random when observed individ-
ually, but are perfectly correlated.

A dynamic programming algorithm using thesMi,j

values can be used to calculate a tree that contains the
consensus secondary structure of the training sequences
and captures the maximum amount of correlation infor-
mation. A traceback routine can recover this tree, and
this tree is then as a guide to create the structure of the
CM.

The full training process therefore consists of first cre-
ating a CM structure via mutual information from some
initial sequence alignment. EM iterations then estimate
the optimal parameters of the current CM. Once the pa-
rameters converge, the current alignment to the model is
used to create a new CM structure using mutual infor-
mation, and the EM iteration process begins again. This
process can be repeated continually to produce a fully
trained CM.

It turns out that this model estimation procedure
works well even for unaligned training sequences when
a random initial alignment must be guessed.

3.4 Database Searching

The algorithm for searching for homologous RNAs in
a database is nearly identical to the alignment algorithm
described earlier. In scanning the database, subsequences
are aligned against the CM and their alignment scores
are calculated. These scores can be used to calculate a
log-likelihood ratio compared to a null model that this
sequence is a homologous RNA. Appropriate threshold-
ing can then be applied to distinguish which sequences
most closely match the model.
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3.5 Results

The paper presents results demonstrating the perfor-
mance and accuracy of RNA covariance models. The
authors make use of a database of 1415 aligned tRNA
DNA sequences to select two randomly selected training
sets each of size 100, and a random test set also of size
100. Two CMs were constructed from trusted alignments
of the two training sets, and one CM was constructed
from the trusted alignment of all 1415 tRNA sequences.
In addition, two CMs were constructed from randomly
selected sequences from an unaligned training set with
no information about secondary structure.

Each model was used to produce multiple sequence
alignments of the set of 100 test sequences. The align-
ments were then compared to the trusted alignment to de-
termine accuracy. The models constructed from trusted
alignments produced scores ranging from 93% to 95%
correct. Surprisingly, the models constructed from un-
aligned sequences still produced scores ranging from
90% to 92% correct.

Finally, the authors compare their best model against
the then state-of-the-art tRNA detection program TR-
NASCAN to see how well the model can detect homol-
ogous RNAs in a database search. The best-trained CM
built from a trusted alignment of 1415 tRNA sequences
outperformed TRNASCAN with respect to both sensitiv-
ity and specificity. In fact, the best-trained CM yielded
better than 99.8% true positives with less than .2 false
positives per Megabase searched.

The paper also presents a very interesting result show-
ing the amount of pairwise correlation information (in
bits) captured by the secondary structure of a CM. The
results suggest that a CM captures about twice as much
information about an RNA family as does an HMM
which can only consider primary sequence information
alone. Surprisingly, the results also show that tertiary
structure information such as pseudoknots only con-
tributes at most 2 to 3 additional bits of information.
This suggests that capturing tertiary structure informa-
tion in an RNA analysis model is not crucial for the task
of database searching.

3.6 Discussion

This paper showed how covariance models can be
used to create accurate models of RNA families suitable
for performing multiple alignments, secondary struc-
ture prediction, and database searching for homologous
RNAs.

It turns out that covariance models are really just an
alternate formalism for the SCFGs described in [12] with
a slight extension. The SCFG-based model does not al-
low for insertions and deletions in the RNA sequence.
Thus, it is an ungapped model. CMs on the other hand,

extend SCFG-based models by allowing for insertions
and deletions (ie gaps), thereby creating a more accu-
rate profile model of an RNA family. Such a model is
better suited for searching databases at the DNA level.
This idea is similar to how profile HMMs generalize
the match-state-only HMMs (ie ungapped weight ma-
trix models) typically used for DNA sequence analysis.
Simply put, CMs are to SCFGs as profile HMMs are to
match-state-only HMMs.

4 Taking Phylogeny Into Account

The profile SCFGs and covariance model methods
we’ve considered so far use information from many RNA
sequences to perform RNA analysis. In fact, these meth-
ods require a very large number of RNA sequences to
create accurate prediction models. However, none of
these methods takes into account the evolutionary his-
tory, or phylogenyof the sequences. Presumably, this
extra information may make RNA analysis models even
more accurate.

In this section, we consider two papers [8], [9] that
take the phylogenetic tree of the RNA sequences into ac-
count to create a SCFG-based model suitable for RNA
secondary structure prediction.

4.1 SCFGs and Phylogenetic Trees

We first consider the original paper by Knudsen and
Hein [8]. Given an initial structural alignment of RNA
sequences and a phylogenetic tree relating these se-
quences, the paper presents a two-part model composed
of a SCFG and an evolutionary model that can be used to
predict a single, common secondary structure describing
the RNA sequences. In addition, if the phylogenetic tree
is unavailable, the maximum likelihood (ML) estimate of
the tree can be calculated from the model.

While the ideas presented in this paper are very in-
teresting, the paper itself is unfortunately rather poorly
written and organized. The authors are not clear in many
of their definitions, and it is oftentimes difficult to un-
derstand how and where the phylogenetic information is
incorporated. Nonetheless, the description below hope-
fully captures most of the paper’s intuition.

The model consists of two parts: a SCFG and a mu-
tational model, which is oftentimes confusingly referred
to as an ”evolutionary model” throughout the paper. The
SCFG used in the paper is quite simple:

S → LS | L
F → sF ŝ | LS
L → s | sF ŝ

wheres symbolizes an unpaired base andsŝ symbol-
izes paired bases in a stem. That is, thesF ŝ production
results in the pairing of the surrounding basess and ŝ.
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This SCFG’s parameters are estimated using the Inside-
Outside algorithm described previously on a training set
of folded RNAs.

The mutational model consists of two matrices that
specify mutation rates between all possible bases X and
Y and between all possible base-pairs XY and X’Y’.
These mutational rates are also estimated from an initial
training set of folded RNA sequences. This mutational
model presumable captures some sort of evolutionary in-
formation about the set of RNA sequences in the training
set.

The paper refers throughout to ”the model” as the
combination of the trained SCFG and the estimated mu-
tation rates of the mutational model.

Suppose then that we are given a test set of RNA se-
quences and their structural alignment and phylogenetic
tree relating the sequences. The paper shows how to use
a trained model to predict a common secondary structure
for this test set of sequences.

The first task involves calculating the column proba-
bilities for both paired and unpaired columns in the test
set’s alignment. This can be done using the model’s
mutation rates and the test set’s phylogenetic tree using
a well-known tree post-order traversal procedure devel-
oped in the early 1980s.

Having calculated the column probabilities in the
alignment using the model’s mutation rates, it is possi-
ble to calculate the probability of the entire alignment
P (Align|T, M) given the phylogenetic treeT and the
modelM . This is done by summing over all possible
secondary structures describing the alignment. Luckily
enough, manipulation of this derivation results in a term
equal to the product of the column probabilities in the
alignment.

It turns out that this sum, and therefore the probabil-
ity of the alignment given the model and the tree can be
calculated using a dynamic programming algorithm that
extends the view of the model’s grammar to generate pro-
ductions over columns of the alignment. When ans is
used in a production rule, it instead refers to a column
in the alignment. Since such a column has a probability
that we’ve already calculated, then we can multiply this
probability to the production probability each time ans is
produced by the grammar. A similar trick is performed
for production rules producing base pairs. By viewing
the grammar in this way, we get a SCFG that is based on
the trained model but generates columns in alignments.

Finding the most likely, common secondary structure
that represents the test set’s alignment is then easy to do.
Simply apply the CYK algorithm for SCFGs that we saw
previously to this ”extended” grammar over columns in
alignments.

Finally, the paper also points out that the ML estimate
of the phylogenetic tree can be calculated from the model

if the tree is not given. Given a tree topology, this calcu-
lation essentially optimizes the branch lengths to find the
treeT with this topology that maximizes the alignment
probabilityP (Align|T, M). The resulting tree is the ML
estimate of the phylogenetic tree. However, the authors
brush over how to actually estimate a good tree topol-
ogy saying that exhaustive search, branch and bound, or
heuristic methods can be used.

4.1.1 Results

The authors build a model (both a SCFG and the
mutational or evolutionary model) using a training
database of tRNAs and large subunit ribosomal RNAS
(LSU rRNAs) with well-known and well-established sec-
ondary structures. The database was reduced slightly by
removing sequences with unknown bases.

Single base frequencies and base pair frequencies
were estimated from counts of corresponding positions
in the training set of sequences. To estimate mutation
rates, all possible ordered pairs of sequences containing
at least 85% identical base sequences were considered.
The single base positions in the pairs were examined for
any differences in observed bases. Counters kept track
of the number of times base X and base Y were observed
at the same position in different sequences. These counts
were then used to estimate the rates of mutation between
all possible bases X and Y. A similar technique was used
to estimate base-pair mutation rates.

Finally, the parameters of the SCFG part of the model
were estimated using the standard Inside-Outside algo-
rithm applied to the same database of training sequences.

Having constructed a representative model of RNA
sequences involving evolutionary history, the authors ap-
ply their model to predicting the secondary structure of a
set of 4 representative bacterial RNase P RNA sequences
with known structures, phylogenetic tree, and alignment.
The 4 sequences were grouped into all possible pairs and
triples to see how well secondary structure prediction ac-
curacy improved as more sequences were added to the
alignment. The authors found that there were very sig-
nificant improvements in prediction accuracy when se-
quences were added.

The authors also found that if they used Clustal W to
perform the initial alignment, the prediction results still
showed a high level of accuracy. The results were com-
pared against prediction results when no phylogenetic
information was taken into account. This was done by
greatly extending branch lengths in the phylogenetic tree
so as to essentially make the 4 sequences independent.
Results indicated that adding phylogenetic information
improves the accuracy of the results by roughly 5%.

Further comparisons were made between the covari-
ance model methods that we previously examined in [4].
The results showed that phylogenetic information can
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make up for only having a small number of sequences
in the test set’s alignment.

4.2 Pfold: Improved Incorporation of Phyloge-
netic Information

The second paper [9] we consider is by the same au-
thors and improves on the algorithm we just saw for in-
corporating evolutionary information into probabilistic
models of RNA structure.

The paper refers to the methods in [8] for predicting
RNA secondary structure as the KH-99 algorithm. This
paper improves upon the KH-99 algorithm by making
it faster and more robust to alignment errors. The new
method is called Pfold, and its implementation is still
used as a standard RNA secondary structure prediction
tool.

The Pfold algorithm makes the following changes to
the KH-99 algorithm:

1. gaps in an alignment are treated as unknown nu-
cleotides with probability one for any nucleotide.

2. any nucleotide has a 1% probability of being any
other nucleotide. This allows the algorithm to be
more robust because it helps keep single sequences
with slightly different structures from significantly
changing the predicted consensus structure.

3. estimation of the phylogenetic tree is no longer per-
formed through the time-intensive ML estimation
procedure. Instead, standard estimation procedures
are employed.

4. instead of using the CYK algorithm to find the most
likely secondary structure, a different algorithm is
used that finds the structure with the highest ex-
pected number of correctly predicted positions in
the alignment.

4.2.1 Results

Pfold was tested on the same test set used in the orig-
inal paper [8]. The results were essentially identical ex-
cept that Pfold showed better performance. Most im-
portantly, the improvement in computation time allows
Pfold to consider many more sequences than the KH-99
algorithm. This makes the algorithm more practical for
RNA secondary structure prediction.

The authors find that given a good initial structural
alignment, prediction of a consensus secondary struc-
ture improves as the evolutionary distance of the aligned
sequences increases. This is because more covaria-
tion information is yielded by larger evolutionary dis-
tances. However, larger distances necessarily make the
sequences more difficult to align, and a single consensus
structure may not accurately represent many diverged se-
quences. When using pairs of sequencesi andj for an

alignment, the authors show that accuracy seems to in-
crease until an evolutionary distance of roughly0.60 as
defined by the ”Jukes-Cantor” distancedij :

dij = −
3

4
log(1 − 4f/3) (2)

wheref is the fraction of sitesu where the base at posi-
tionu in sequencei andj differ in the pairwise alignment
[3].

The authors point out that their improved Pfold algo-
rithm still lacks a grammar that more closely describes
real RNA structures. They claim that if such a gram-
mar was incorporated, the accuracy of the method would
approach state-of-the-art energy minimization methods
such as Mfold [14] for a single sequence.

5 Probabilistic Models for Detecting Non-
coding RNAs

In this section we consider two papers that look at
whether or not probabilistic models of RNA structure
can be used to effectively detect novel noncoding RNAs
(ncRNAs) in a large genome sequence [10], [11]. Be-
cause ncRNA genes contain a much smaller amount
of statistical information than protein-coding genes, it
is difficult to find a statistically significant signal for
ncRNA detection. How then do probabilistic models of
RNA structure perform with such a weak signal? We
also briefly discuss a third paper that proposes practi-
cal speed-ups for some of the developed scanning algo-
rithms.

5.1 Detecting ncRNAs using Secondary Struc-
ture

The first paper we consider [10] considers whether or
not RNA secondary structure is a strong enough statisti-
cal signal for detecting new ncRNAs, and whether or not
a standard SCFG-based model can detect ncRNA genes
in a genome.

The paper constructs two models of RNA folding.
Both of these models are based on a straightforward
SCFG that models RNA secondary structure in a man-
ner similar to what we’ve already discussed. The first
model, referred to as the ”probabilistic model,” uses
training RNA sequences to derive probability parame-
ters for the grammar via the standard Inside-Outside al-
gorithm. The second model, referred to as the ”thermo-
dynamic model,” instead derives these parameters from
previous experimentally determined thermodynamic in-
formation.

A scanning algorithm for finding new RNAs in a
genome sequence is then developed for each model. For
the probabilistic model, the scanning algorithm essen-
tially uses the Inside algorithm to calculate log-odds
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scores for every subsequence of length≤ w in the
genome sequence. This log-odds score is the log ratio
of the likelihood that this subsequence was generated by
the model to the likelihood that it was generated by a
null model. The null model emits nucleotides accord-
ing to an estimated ncRNA base composition. Appro-
priate thresholding can then be applied to the scores to
determine whether or not a subsequence is a match to the
model.

The thermodynamic model’s scanning algorithm is
only slightly different, scoring only subsequences of a
fixed lengthw and using a CYK algorithm to calculate
Z-scores instead of log-odds scores. A Z-score calcu-
lates how many standard deviations the folding energy
of the subsequence differs from the average energy of all
permutations of the subsequence.

5.1.1 Results

Initial results were promising for the probabilistic
model’s scanning algorithm. Using a log-odds ratio
larger than 9.1, the authors determine that scanning with
a maximum window length ofw = 100 nucleotides
will yield no more than 10 false positives per megabase.
The hits found when testing a number of sequences with
known RNA genes were clearly above this threshold.
However, they also observed a clear correlation between
the relative CG bias in the RNA genes and the strength
of the detected signal.

To understand what role the effects of this CG bias
plays in their scanning algorithm, they composed a new
scanning algorithm that simply looks for CG bias in a
genome to find RNA genes. The results of using this
scanning algorithm were remarkably similar to the scan-
ning performed with structural information. Even after
randomly shuffling the RNA gene sequences, the struc-
tural scanning algorithm was still largely unaffected. In
addition, embedding an RNA gene into a random se-
quence of identical base composition resulted in an in-
ability of the structural scanning algorithm to find the
RNA gene.

These tests unfortunately suggested that the detector
was actually latching onto the increased amount of CG
base composition of RNA genes as opposed to any sec-
ondary structure signal. These experiments lead the au-
thors to conclude that probabilistic models can detect
ncRNAs in a genome simply because of a CG base com-
position bias and not as the result of secondary structure
information.

On the flip-side, similar results were also discovered
for the thermodynamic model’s scanning algorithm. In
fact, these results were even more discouraging since Z-
scores assume that the background composition is ran-
dom. This is certainly not the case in most genome se-
quences.

The authors reluctantly conclude that then state-of-
the-art probabilistic models and algorithms for RNA
secondary structure prediction are unable to distinguish
ncRNAs from random sequences. This negative result
holds true even if the model’s parameters are based on
thermodynamic information.

5.2 Detecting ncRNAs using Comparative Se-
quence Analysis

In this section we consider an extension of the work of
[10] for detecting ncRNAs [11]. This paper attempts to
use comparative sequence analysis between aligned pairs
of homologous sequences (for example, a pairwise align-
ment of two related genomes) to find RNA genes.

The basic idea is that we can find conserved RNAs
by looking for locations in the alignment where the pat-
tern of mutation between bases and base-pairs suggests
a region of conserved secondary structure. Since the
secondary structure of RNAs tends to be more impor-
tant than the primary sequence, then it makes sense to
use comparative sequence analysis to find regions where
base and base-pair mutations exist that still conserve a
common secondary structure.

The authors note though that this technique will only
work for conserved structural ncRNAs.

The authors construct three probabilistic models of
structurally conserved RNA pairwise alignments that can
be used to scan for structurally conserved RNAs in a
given genome pairwise alignment. The basic idea is very
similar to the scanning algorithm proposed in [10]. The
main difference is that the models generate aligned pairs
of RNA sequences instead of a single RNA sequence.
That way, the scanning algorithm can scan a pair of
aligned genomes to find structural conserved RNA re-
gions that match the model.

The model that is particularly relevant to our analy-
sis is based on apair stochastic context-free grammar
(Pair-SCFG). Such a grammar is identical in nature to the
SCFGs we’ve already seen. However, Pair-SCFGs gen-
erate a pair of sequences simultaneously. That is, each
production generates symbols in two different sequences
at the same time. The authors extend the SCFG of [10] to
a pair-SCFG that generates two aligned RNA sequences.

After training the pair-SCFG model, one can then per-
form a scanning algorithm on a pairwise aligned set of
genome sequences to find any matches to the model.
This scan makes use of an extension of the Inside algo-
rithm for SCFGs in order to calculate log-odds scores
of all pairs of aligned subsequences of length≤ w in the
genome alignment. Once again, appropriate thresholding
can be applied to determine which pairs of subsequences
most closely match the model.

However, it is usually desirable to forget about the in-
put pairwise alignment and allow the pair-SCFG to opti-
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mally realign the input sequences to the model. This is
typically desirable since input alignments oftentimes will
not have considered secondary structure. Thus, the align-
ment around structurally conserved RNA regions may be
suboptimal. However, the authors point out that realign-
ing a pair of sequences of lengthm and lengthn respec-
tively to a pair-SCFG takes timeO(n3m3), which is far
too prohibitive.

5.2.1 Results

The authors first test their trained models, whose im-
plementation was called QRNA, on simulated aligned se-
quences to see how base composition affects detection.
Wary of the tendency for these SCFG-based models to
latch onto CG bias in the sequences, the authors gener-
ated a range of CG composition sequences for testing the
scanning algorithm on. They found again that the speci-
ficity of the algorithm degrades as the CG bias fluctu-
ates outside of a content range of 45% to 60%. To deal
with this, they tuned their model by setting the parame-
ters based on the CG composition of the input alignment.
However crude this method, it does seem to offset the
bias created by CG-rich input sequences.

They then took single RNA genes from a given fam-
ily and used these sequences as a BLASTN query to
find all genes in the same family. They retained those
found BLASTN alignments greater than 50 nucleotides
in length, with an E-value≤ 0.01, and with an overall
similarity of ≥ 65%. These resulting alignments were
then run as input to QRNA to score whether or not they
were RNAs. The authors found that there is a tradeoff
between needing a BLASTN alignment that is correct
enough but also dissimilar enough to highlight mutations
in base-pairs of the RNA secondary structure. The au-
thors choose to analyze only BLASTN alignments in a
”sweet spot” of between 65% and 85% nucleotide iden-
tity.

Testing against an entire genome was done by align-
ing the E. Coli and Salmonella typhi genomes using
known BLASTN alignments. The genomes were bro-
ken into 3 components. The scanning algorithm used a
threshold log-odds score of 5 bits to classify RNAs in
windows of 200 nucleotides advanced at 50 nucleotide
intervals. Results were not overly promising, showing
that only 29% of known RNAs were detected using this
scanning algorithm.

The authors suggest that the failure was largely due to
the lack of BLASTN alignments that fell in this ”sweet
spot” identify range. Therefore, the authors conclude
that non-structurally aware initial alignments are the lim-
iting factor in such a probabilistic-based scanning algo-
rithm’s detection accuracy. Clearly, performing an ini-
tial, optimal realignment of the sequences to the model
would be helpful, although this was not undertaken due

to the vast computational overhead needed.

5.3 Speeding-up Pair-SCFG Alignment for
ncRNA Detection

A fairly recent paper [7] looks at ways to speed up the
alignment of pairs of sequences to a pair-SCFG. In par-
ticular, the paper shows how to speed up the standard In-
side and CYK algorithms for pair-SCFGs needed by re-
alignment and scanning algorithms like those discussed
in [11].

The details of the algorithms are complicated, but the
intuition is as follows. The algorithms for pair-SCFGs
work by computing likelihoods for every possible pair
of substrings of the two sequences. However, if the sec-
ondary structure of each RNA sequence is known (or we
have a best guess for the structure), then the recursion in
the algorithms can be limited to considering only pairs
of substrings consistent with the known secondary struc-
ture. The term ”fold envelope” is used to describe a valid
set of substrings consistent with the known structure for
any one sequence in the alignment. Computing likeli-
hoods conditioned on secondary structures is then trans-
formed to computing fold envelopes.

These new algorithms can show dramatic increase in
speed. In fact, for some extreme cases, the reduced run-
ning time is onlyO(mn) wheren andm are the lengths
of each of the aligned sequences respectively!

6 SCFG Design Considerations

None of the papers we have considered discusses how
to choose an underlying grammar for a SCFG-based
model. Indeed, more complex grammars lead to more
parameters that need to be estimated from training data.
However, overly simple grammars may fail to capture
important relationships or may bias prediction results to-
wards a very narrow model.

A recent paper [2] attempts to answer the question of
what small, simple SCFG designs are best for RNA sec-
ondary structure prediction?

This paper defines the notion of ”structural ambigu-
ity” of a grammar: a grammarG is structurally unam-
biguous if for every RNA sequencex generated byG,
every unique secondary structure ofx has only one parse
tree inG that represents it. The authors show that if the
grammar is not structurally unambiguous, then the CYK
algorithm for determining the optimal secondary struc-
ture can yield suboptimal results. This turned out to be
a practical concern for most of the grammars tested. As
a result, the authors therefore focus on developing a set
of small, structurally unambiguous grammars to see how
well they perform.

The authors compared their set of grammars against
standard energy minimization methods for predicting
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RNA secondary structure. They found that the grammar
used by Knudsen and Hein in Pfold [9] and discussed
previously performs quite well considering its simplic-
ity.

One minor shortcoming of this paper is that the au-
thors provide no formal proofs that their grammars are
structurally unambiguous. In a recent paper, we mod-
ify some of their formalisms to provide a framework for
proving grammars to be structurally unambiguous. We
then use this framework to prove that all of the gram-
mars in the paper are in fact structurally unambiguous as
needed.

7 Non-Probabilistic Methods for RNA Sec-
ondary Structure Analysis: Overview

In this section we briefly mention some of the
standard non-probabilistic methods for RNA secondary
structure analysis. The goal of this paper has been to
look at probabilistic methods. However, it is impor-
tant to understand that many standard and popular non-
probabilistic methods also exist and are used with vary-
ing degrees of success.

7.1 Minimum Free Energy Methods

Perhaps the most popular method of RNA secondary
structure prediction uses a technique known as themini-
mum free energy method(MFE) for folding a single RNA
sequence. This method uses thermodynamic parameters
to construct a secondary structure of a single RNA se-
quence that minimizes its total free energy. Molecules
with less free energy are typically more stable structures
in nature. Therefore, a minimum energy structure rep-
resents an optimal energetic folding. This technique is
employed in two very popular implementation packages
called Mfold [14] and RNAfold [6]. These two packages
have been around for many years and are still commonly
used asthe benchmark for evaluating new probabilistic
methods.

This technique is usually augmented in practice by
combining a comparative sequence analysis approach.
Many methods of comparative sequence analysis using
MFE-style heuristics have been applied. While a detailed
discussion of such techniques is beyond the scope of this
paper, a good overview of these various methods can be
found in a recent survey paper by Gardner and Giegerich
[5].

7.2 Maximum Weighted Matching Method

Another recent method for RNA secondary structure
prediction uses a graph-theoretic approach [13]. This
method is particularly clever because of its simplic-
ity. The majority of methods we’ve discussed are in-
capable of incorporating tertiary structure information

(such as pseudoknots or base-triples) into the predicted
RNA structures. This paper proposes using amaximum
weighted matching methodfor RNA secondary structure
prediction that can model any possible tertiary structure.

The basic idea is simple enough. Given an RNA se-
quence, construct a graph as follows: for every base in
the sequence, add a vertex to the graph. Then, add edges
between all possible pairs of vertices. Edges are given
weights based on either phylogenetic or thermodynamic
scores between possible base-pairs (such as mutual in-
formation that we discussed previously), experimental
data, or a combination of both. A standard algorithm
can then be applied to find the matching in the graph
where the sum of the edge weights in the matching is
maximal (maximal weighted matching). The algorithm
is called ”Gabow’s algorithm” and works by continually
building the optimal weighted matching fork edges by
augmenting the optimal weighted matching usingk − 1
edges. The resulting matching corresponds to what bases
are paired in the RNA sequence.

The paper of [13] also implements a clever post-
processing filter that removes spurious base-pairs from
the predicted structure. It does so by removing match-
ings that resulted because of intermediate matching per-
formed during the augmentation steps of Gabow’s algo-
rithm. It turns out that important matchings tend to re-
main fixed throughout the course of the algorithm.

The great promise of this technique is that by sim-
ply playing with the structure of the graph and the edge
weights, any type of base-pair relationship, including ter-
tiary relationships, in RNA structures can be predicted.
The paper implements an RNA folding algorithm using
the maximum weighted matching method with a num-
ber of edge weight heuristics. The paper finds that the
predicted structures are oftentimes nearly as good as the
structures determined manually through lab experiments.

8 Summary

In this paper, we’ve attempted to provide a literature
review of some of the most important papers on proba-
bilistic methods for RNA secondary structure analysis.
We examined the original papers on SCFG-based and
CM-based analysis. From there we showed how more
recent work has attempted to incorporate phylogenetic
information into the models. We also discussed newer
techniques for detecting ncRNAs using a combination of
comparative sequence analysis and SCFG-based models,
and how to address issues of algorithm speed and effi-
ciency for the related Pair-SCFG-models. The issue of
SCFG design was also addressed. Finally, we provided a
brief overview of some of the standard non-probabilistic
methods that exist as further reading for anyone inter-
ested in RNA secondary structure analysis.
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We should note that there are still a great many varia-
tions on the basic probabilistic models we discussed. For
example, there has been a good deal of work on combin-
ing energy calculations with evolutionary information for
RNA secondary structure prediction. The curious reader
should find ample resources in the reference sections of
the papers discussed in this paper.
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