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Abstract

Biologists typically try to solve two important classes —
of RNA analysis problems: (1) predicting the secondary AA
structure of a given RNA sequence, and (2) analyzinc l;J L.J
multiple alignments of families of related RNAs to create
a structure profile useful for searching databases for ho- .
mologous RNAs and for aligning RNA sequences to thi v
profile. Sterm

In this paper, we provide a literature review of some  ww j42s50/-Crick pairs
of the most important papers on standard probabilistic —wm (/& pais
methods for solving these two classes of problems. mm Aismarch

1 Introduction Figure 1: An example secondary structure of an RNA

. . molecule [1]. Stem and loop regions are labeled, along with
RNA is a polymer composed of four necleotides: ade-gjfterent types of base pairs.

nine, cytosine, guanine, and uracil, abbreviated as A, C,

G, and U. As in DNA, these nucleotides form comple-

mentary, hydrogen-bonded Watson-Crick base pairs beRNA analysis problems that biologists typically try to
tween A-U and G-C, where uracil replaces thymine (T)solve:

from DNA. The G-C base pair is more stable than the L .

A-U base pair because of an additional hydrogen bond. 1. Predicting the secondary structure of a given RNA
While there are 16 possible base-pairings, only 6 (A-U, sequence.

G-U, G-C, U-A, U-G, C-G) are stable enough to f?m_' 2. Analyzing multiple alignments of families of re-
pairs. The rest of the unstable pairs are known as "mis-  |ated RNAs to create a structure profile useful for

maiches." _ _ _ searching databases for homologous RNAs and for
Because RNA is a single-stranded molecule, it tends aligning RNA sequences to the profile.

to fold back on itself by binding together stable base
pairs. This resulting folded structure is called sex- In this paper, we provide a literature review of some
ondary structureof the RNA. An example RNA se- of the most important papers on standard probabilis-
guence and its secondary structure is shown in figure ltic methods for solving these two classes of problems.
Standard terminology definesstemas a region of con- In particular, we consider the use of Covariance Mod-
tiguously stacked base pairs, andbap as a region of els (CMs) [4] and Stochastic Context-Free Grammars
unpaired bases bounded on both ends by paired bases.(SCFGs) [12]. After reviewing the original papers in

It turns out that the secondary structure of RNA tendsthese areas, we look at an extension to SCFG-based
to be more important to RNA functionality than its pri- methods that incorporates evolutionary history to in-
mary sequence of nucleotides. In fact, base substitutionsrease the accuracy of the analysis [8]. This method-
in the primary sequence can oftentimes be made as longlogy has led to an important RNA analysis tool, Pfold
as the secondary structure remains intact. As a resulf9]. We then discuss a number of papers that con-
analysis of RNA tends to be more complicated than DNAsider the analysis of noncoding RNAs [10] through what
sequence analysis. There are two important classes @fre called Pair-Stochastic Context-Free Grammars (Pair-



SCFGs) [11], [7]. Finally, we look at a paper that ad- SCFGs can represent RNA sequences having a com-
dresses how to design appropriate SCFGs [2], and wenon secondary structure by defining productions that can
conclude by providing a very brief overview of common be classified into 4 typesS — aSa describes base
non-probabilistic methods for the interested reader. pairs (for example,S — ASU defines an A-U base
Throughout the paper, we occasionally refer to the exair), S — aS andS — Sa describe unpaired bases,
cellent explanations found in the standard book on theS — .S describes deletions in the RNA sequence, and
subject of biological sequence analysis [3]. This book isS — S5 describes branched secondary structures. So
highly recommended for anyone interested in RNA se-for example if we have a SCFG that generates the se-
guence analysis. guence CAGCU according to the derivatisn= C'S =
CASU = CAGCU, this derivation would correspond
to a secondary structure whereby the A-U and G-C are
paired to form a stem, and the first C is unpaired into an
unstructured single strand. This derivation, and theesfor
In this section, we examine the original paper c)fthe secondary structure of CAGCU are easily identified

Sakakibara et al. [12] that applied SCFGs to thebyfokin}g at the sequence’s p?rse tr_ee. RNA
problems of folding, aligning, and discriminating fam- S we've seen, a parse tree for a given sequence

ilies of tRNA sequences. This paper does not addresgeﬁnes a particular derivation and therefore corresponds

how to build profiles necessary for searching DNA-level ©© that sequence’s predicted RNA secondary structure.

databases for homologous RNAs. This is certainly pos-This correspondence between parse trees and RNA sec-

sible with SCFG-based models, but we’ll see in the nex@ndary structure is key to SCFG-based analysis methods.

section a related formalism that better deals with thish For the algo:thn;]s [;rgi?ted in this pape rl the au- d
modeling issuse. thors assume that the s are in a special restricte

form, calledChomsky normal fornfCNF). Grammars
in this form only have production rules of the form
2.1 SCFGs W, — W,W, or W, — a. Itturns out that any grammar

The paper begins by first providing definitions for can be rewritten in CNF with appropriate modifications.
SCFGs and related termino'ogy_ gxammar or more While all of the algorithms in this paper I’ely upon the
accurately, @ontext-free grammas composed of 3 dis- grammars being in CNF, there are variants of the algo-
tinct parts: (1) A finite alphabef of terminalsymbols.  fithms that work on more general grammar forms. Some
The terminal symbols for RNA sequences are simplyof these are discussed in [3].
those in the alphabet A, C, G, and U. (2) A se€tof .
nonterminal symbols$;...Sy with a special start sym- 2.2 Secondary Structure Prediction
bol Sp. (3) A set ofproductionsP that define how to The first problem the authors solve is how to use
replace nonterminal symbols with a new subsequencesCFGs to predict secondary structure. More formally,
The language represented by the grammar is the set @ﬁven an RNA primary sequenceand a SCFG> that
all sequences of terminals that can be derived from thenodels the RNA family of, we want to predict the most
grammar by repeatedly applying production rules to exdikely secondary structure of. Since parse trees of
pand nonterminals starting from the nontermiigl represent secondary structures, this problem is reduced

A derivationis a sequence of grammar production to finding the most likely parse tree fer
rules used to derive a given sequence of terminals from Finding the most likely parse tree for can be
So. A parse treevisualizes a derivation as a syntactic solved using the Cocke-Younger-Kasami (CYK) algo-
tree-like structure, where the root node of the trejis  rithm. Let's say that the sequeneehas L symbols,
and internal nodes correspond to intermediary sequencésdexedz, ..., z,. Suppose the SCFG in CNF hag
encountered in the derivation. Leaf nodes correspond tponterminalsV = W, ..., Wy, with start nonterminal
sequences of terminals found as subsequences in the dg4. We let v, y, and z be indices for nontermin&s,,
rived sequence. A given sequence may have multipleV,, andW,. The probability parameters of the SCFG
valid parse trees. If some sequence has more than orge denoted as, (y, z) to specify the transition probabil-
parse tree, the grammar is considered t@bwiguous ity of the production ruleW, — W, W,, and ase,(a)

The reader is referred to any standard introductory texto specify the emission probability of the production rule
on the theory of computation for more details. W, — a. The CYK algorithm uses dynamic program-

A SCFG defines probability values for each produc-ming to calculate the variabtg(i, j, v) which equals the
tion rule in the grammar. Therefore, a SCFG defines dog probability of the most likely parse subtree rooted at
probability distribution over all possible sequences thatthe nonterminalV, for the subsequence;, ..., z; of s
can be generated by the grammar. for all i,i, and v. At the end of the calculation(1, L, 1)

2 RNA Analysis Using Stochastic Context-
Free Grammars



holds the log probability of the most likely parse tree used as a basis for searching for homologous RNAs in
of s. The initialization and recurrences for calculating a genome database. A nice example of such a scanning
~(i, 7, v) are given below: algorithm is discussed in [10].

2.4 SCFG Parameter Estimation

Initialize: fori=1to L, v=1to M: . . .
o Finally, the authors provide an expectation-
(i, j,v) = logey (i) maximization type algorithm known as the Inside-
Recurrence: fori=1to L-1,j=i+1toL, v=1to M: Outside algorithm for estimating the probability
v(i, j,v) = maz, .mazy=;. ;1 parameters of a SCFG from a set of training sequences.

This algorithm makes use of an algorithm called the
Outside algorithm that calculates variablg$i, j, v)

By incorporating a traceback variable into this proce-8aual to the summed probability of all parse trees ex-
dure, a simply traceback algorithm can then be applie!Uding subtrees rooted at nontermifial that generates
to recover the most likely parse tree<0f3]. sup;equencei, ..zj. The outside glgorlthm_ uses the

With the CYK algorithm, once can also produce a @(ij,v) values calculated by the Inside algorithm [3].

multiple, structural alignment of RNA sequences. Ifwe After calculatinga(i, j, v) and (i, j, v) values, one
define a "match” nonterminal as a nonterminal symbolCa" Use EM to re-estimate the parameters of the SCFG.

that derives either a letter or two base-paired lettersdn th 1 NiS procedure essentially calculates the expected num-
consensus structure of the RNA family being modeled Per of times:(v) that a given nontermindV’, is used in a
then match nonterminals correspond to columns in th&l€rivation, and the expected number of timgs — yz)
multiple alignment where the match nonterminal’s let- that the production rulé/’, — W, W is used from non-
ters appear in the consensus structure. For each sequeriegminallv, in a derivation. The valug% is the re-

in the alignment, simply calculate that sequence’s mosestimation of the transition probability,(y, z). A simi-
likely parse tree. Then print the sequence in such a wajar procedure can be applied to re-estimate probabilities
that letters derived from match nonterminals are placedor theW,, — a production rules.

{v(i, kyy) +y(k+ 1,4, 2) + logty(y, 2)}

in their appropriate columns in the alignment. The authors note that the standard Inside-Outside al-
o gorithm takes time cubic in the length of each training
2.3 Likelihood of a Sequence sequence. As a result, they develop a faster, modified

Qo . . version of the Inside-Outside algorithm, known as the
To calculate the likelihood or probability that a given Trree-Grammar EM training algorithm. This algorithm

sequence is generated by the model SCFG' one mUSthowever requires folded RNA sequences (not just the
sum up all of the probabilities of all possible parse treesRNA sequence) as training examples

of s that can be generated by the grammar. The algo-
_rithm for_do_ing this is known as t_he Inside algorithm. It 25 Results
is very similar to the CYK algorithm, but replaces the
max terms with sum terms in the recurrence to calculate The authors apply their new EM-style training algo-
variablesx(i, j, v) equal to the probability of a parse sub- rithm to a database of 1477 tRNA sequences to pro-
tree rooted at nontermin#, for a subsequencs, ...x; duce four grammars. They then used these grammars to
of sforalli, j, and v. perform 3 tasks: discriminate tRNAs from non-tRNAs,
The authors show that by taking the -log of this prob-produce multiple sequence alignments, and predict sec-
ability, they get thenegative log likelihoodNLL) score  ondary structures of new RNA sequences.
of s being generated by the grammar. This score is nor- The generated multiple alignments for each of the
malized to produce a Z-score that is suitable for threshfour grammars were compared to a known alignment
olding to determining whether or not a given sequencecalled EMBLtRNA. The results indicate that for the best
belongs to the family of RNA sequences represented byrained grammar, upwards of 99% of base pairs specified
the SCFG model. by the EMBLtRNA alignment were also matched in the
The authors fail to mention that the Inside algorithm alignment made by the grammar. However, one particu-
(or for that matter the CYK algorithm) can be used to lar class of tRNAs showed only 83% matching accuracy.
scan over large genomes to score all subsequences dhe authors note that the majority of such non-matching
length< w. The dynamic programming algorithm cal- RNAs were parasitic worm and mammalian mitochon-
culates the Z-score for each subsequence (or alternahkial tRNA that lack a specific domain known as the D-
tively the log-odds score) to determine whether or notdomain. This group of tRNAs was referred to as Part lIl.
the sequence is a match to the SCFG model. Therefore, To assess the accuracy of discriminating tRNAs from
both the Inside algorithm and the CYK algorithm can benon-tRNAs, the authors compute Z-scores for all tested



tRNA sequences and non-tRNA sequences using the noi
malized NLL score mentioned previously. A Z-score

threshold of 5 was set to discriminate tRNAs from non- A vue
tRNAs. Once again, very good discrimination was v a
achieved except for the Part 11l sequence group. Cs:G,
AU

2.6 Discussion A A GeC i

This paper showed that SCFG-based techniques fo ? ?“c? Ac
the analysis of RNA can be effective. The authors note cuv v A
though that their method is unable to create a good 5
enough model necessary for searching databases at tt
DNA-level to find homologous RNAs. We mentioned B
that such a scanning algorithm could be constructed us .*3 o
ing either the Inside algorithm or the CYK algorithm as a AQ -

basis for scoring subsequences. However, the grammai /,.Jx

should ideally be modified to allow for introns and inser-

tions and deletions of bases. Allowing for insertions and G : : 3"
deletions turns out to be very important for modeling any ASU "c i
real RNA families. £0G, aou

The next paper we consider uses a related mode UoG AGA
known as a Covariance Model (CM) that is a closely re- voe c it
lated formalism to SCFGs. However, CMs allow for in- &
sertions and deletions of bases, thus making them bette
suited for use in scanning algorithms. Figare 1. (A) An exsmple RNA structure, (B) An oedered binary tree description

of that RNA structure. The tree includes dummy begin, end, and branching
. . . X 30n) nodes in addition %o pairwise and singlet nodes that acoount
3 RNA Analysis Using Covariance Models sequence.

g

In this section, we look at a paper by Sean Eddy and

Richard Durbin [4] that develops probabilistic models Figure 2: An example RNA structure along with its or-

known ascovariance model§CM) for performing RNA - e req hinary tree description from the original paper.
consensus secondary structure prediction, multiple se-

guence alignment, and database similarity searching.

This paper surfaced at nearly the same time as thé the secondary structure correspond to pairs emitted by
paper on SCFGs we previously discussed. The modehe corresponding node in the tree. This idea is analo-
and techniques are essentially a different formalism folgous to emitting nested pairs in a context-free grammar.
SCFGs-based analysis. However, unlike the SCFGs W fact, these trees are nothing more than parse trees for
saw in [12], the covariance models in [4] can account forthe derivation of an RNA sequence from a SCFG. An
insertions and deletions of bases necessary for providexample of such a binary tree is shown in figure 2.
ing a more accurate model of an RNA family suitable for However, as was the case with parse trees for SCFGs,
performing databases searches for homologous RNAS. gch pinary trees can only describe a fixed RNA struc-
ture. In general we want to model a family of RNA se-
quences and their structure; that is, we want a profile of

The basic idea behind a covariance model is straightan RNA family. A given family of RNAs will exhibit
forward. A CM is based on a binary tree that describesa consensus secondary structure. However, individual
both the primary sequence and secondary structure of Bomologous RNAs will likely differ from the consensus
single RNA. Suppose we are given an RNA sequence angrofile in different ways. To model these variations, we
its secondary structure. We can model this sequence arteed to allow for the possibility of insertions, deletions,
its structure by using a tree-like state machine. There argnd mismatched base-pairs with respect to the consensus.
nodes that correspond to emitting unparied nucleotidedf we view a binary tree as modeling the consensus struc-
and nodes for emitting paired nucleotides. Special "bi-ture of the RNA family, then these trees are like "guide
furcation” nodes represent junctions between multipletrees” where nodes correspond to columns in a trusted
helices in the secondary structure. Given such a tree, yooultiple alignment.
simply walk the tree from root to leaves and left to right  To model variations in emitted bases, nodes in the
to get the RNA's primary sequence. Paired nucleotideguide tree can be modified to emit bases and base-pairs

3.1 Covariance Models



probabilistically. To accommodate variations in struetur

relative to the consensus, nodes are replaced with a nun i ot rede

ber of statesthat correspond to different structures that xa

can be emitted by the node. For example, a hode migh C o)~ """O

be replaced by a "match” state, an "insert” state, and a ] g

"delete” state. A match state corresponds to the proba: - > e X o

bilistic emission of a matched base-pair, where an inser gun)  duml § ceL

state corresponds to the probabilistic emission of an un- et ’ —~

matched (inserted) base. \r 9% (] ""*:'O
States are connected to each othetrgasition prob- e

abilities. Therefore, each node is essentially expandec L o

into a small state machine which can make transitions >

within itself or to a child node, emitting bases and base-

pairs probabilistically. These expanded-node state ma

chines allow for changes in secondary structure relative

to the consensus structure specified by the initial guide
tree. The resulting probabilistic model is known asoa
variance model

We note that there are many node types possible in ¢
CM, each of which can expand into many different states
with varying transitions. Some of these node types along
with their accompanying states are listed below:

1.

. right singlet node this is the dual of a left singlet

. bifurcation node- this node corresponds to a junc-

. beginandendnodes - these are special nodes tha

left singlet node this node corresponds to the top
2 "A o0 -" nodes in the binary tree of figure 2. This
node has 3 possible states with emission probabil-

Figure 2. The seven distinct types of nodes from Figere | are broken up o

ities on letters: MATL (match left), INSL (insert states a5 shown. There ase seven different kinds of staies i all (bifurcation BIF,
left), and DEL (delete). These states correspond to mﬁmmﬁf';ﬂfmﬂ”, vt f'"m‘mm
the various ways that a single letter could be emitted re udicaind by acoms. Shiass which hiva agiet or pelririis £ymbicl Sission

} . . o peobabilities are indicated vy ‘ACGU" beside the state
with no "right” match from this node. This is why
it is called a left singlet node.
Figure 3: An example of a covariance model showing the

node. different node types and state types.

tion between multiple helices in the secondarypmbabmty distribution on primary sequences and sec-
?ndary structures modeled by the CM.

structure. The node has 2 children nodes, each o
which are transitioned to with probability 1. 3.2 Alignment

. pairwise node this node has a special "match” state  All of the analysis for CMs rely on the basic algorithm

which emits 16 possible base-pairs, each with soméor aligning a given RNA sequence to a CM and calculat-
probability. This corresponds to a base pairing ining this alignment’s probability score. Multiple sequence
the RNA secondary structure. There are also MATL alignments are then performed by aligning sequences
and MATR states corresponding to when part of theone-by-one to the CM. Model training essentially opti-
base-pair match is missing. Other states such amizes model parameters and structure so that training se-
INSL and DEL are also possible in this node. quences are assigned high alignment scores by the result-
I_jng model. Secondary structure prediction is easily de-
rived from looking at which bases are assigned to which

mark the beginning and end of a helix. ) : i
g 9 match states in an alignment. Finally, database search-

An example of a CM showing these nodes and statetng for homologous RNAs is accomplished by looking
is shown in figure 3. This figure is also directly lifted for database subsequences with the highest alignment
from the original paper. scores.

To use these models, we have to set up a specific The CM alignment algorithm is oftentimes referred
model structure for an RNA family and then assign prob-to as the Inside algorithm, and is a variant of the In-
abilities to the model's parameters. Doing so defines aide algorithm for SCFGs. Let's suppose that the RNA



sequencer to be aligned had, symbols denoted as model parameters is repeated until the parameters con-
x1,...,xr, and that the CM had/ states. This algo- verge to a local optimum.
rithm uses a 3-dimensional dynamic programming al- But how do you define the original structure of the
gorithm to calculate the values; ; , which are the log model? While this problem remains a bit of a black art
likelihoods of alignments of subsequenceszofrom  (as it is with HMMs), the authors propose the follow-
1 < z;..z; < Lto subtrees of the CM beginning in state ing solution that uses the notion ofutual information
y wherel < y < M. The states of the CM are num- Given an alignment of the training sequences, mutual in-
bered from the root such that children states of a giverformation calculates the amount of information we gain
state always have higher indices than their parent statebout the letter in column i of the alignment if we know
via preorder traversal. the identify of the letter in column j. Iff,; is the fre-

The initialization and recurrence for calculating the quency of nucleotide in columni of the alignment, then
S; j.y are broken down into cases depending on whatve define the mutual information of columni and j as:
type of statey happens to be. Each; ;, is the sum
of _three nur_npers: (_1) the symbol emission Ic_)g p_roba— M;; = Z Foisag * 10g2 Jziaj 1)
bility for emitting a given symbol(s) at state y in either Jxi % fzj
location: and/orj, (2) the state transition log probabil-
ity of transitioning to a given child statg,..; of y, and  where f,; ,,; is the joint (pairwise) frequency of one of
(3) the scores;/ j: 4., for subsequencé...;’ for child  the sixteen possible base pairs observed in columnsiand
statey,..: Which is found via recursion. The actual re- j. Basically,M;; measures how much the joint frequency
currences are messy and are given on page 2081 in thistribution deviates from the distribution expected & th
paper [4]. two columnsiand j varied independently. For RNH;

At the end of the algorithm$; ;1 contains the score varies between 0 and 2 bita/;; is maximal if columns i
of the entire sequence’s alignment. The alignment can band j appear completely random when observed individ-
reconstructed by tracing back through the dynamic proually, but are perfectly correlated.
gramming matrix and at each-state, following the max- A dynamic programming algorithm using thas; ;
score path. This Inside algorithm takes time cubic in thevalues can be used to calculate a tree that contains the
size of the sequence L and time linear in the size of theconsensus secondary structure of the training sequences
CM. and captures the maximum amount of correlation infor-

The key difference between this alignment algorithmmation. A traceback routine can recover this tree, and
and the Inside algorithm used for SCFGs-based analysithis tree is then as a guide to create the structure of the
is that the CM alignment algorithm uses what is calledCM.
the "Viterbi assumption.” This assumes that the proba- The full training process therefore consists of first cre-
bility that the CM emits a given sequence is equal to theating a CM structure via mutual information from some
probability of the best alignment of the sequence to thenitial sequence alignment. EM iterations then estimate
model, ie the Viterbi alignment. The accuracy of this the optimal parameters of the current CM. Once the pa-
assumption hinges on whether or not the single Viterbirameters converge, the current alignment to the model is
alignment dominates the sum of all possible alignmentsised to create a new CM structure using mutual infor-

Ti,T]

permitted by the model. mation, and the EM iteration process begins again. This
process can be repeated continually to produce a fully
3.3 CM Training trained CM.

The authors then present an algorithm for training a It turns out that th's_ model _es_tlmatlon procedure
CM to a set of training sequenes. Given a set of train-WOrks weII_ even er unaligned training sequences when
ing sequences, a training algorithm finds the CM which? random initial alignment must be guessed.
maximizes the I|k_eI|hood of generating those.seql_Jences\,)'4 Database Searching
Training actually involves two processes: estimating pa-
rameters of a given CM and determining an optimal The algorithm for searching for homologous RNAs in
structure of a CM. a database is nearly identical to the alignment algorithm

Given a model structure, the training algorithm esti- described earlier. In scanning the database, subsequences
mates the parameters for the CM via EM using the align-are aligned against the CM and their alignment scores
ment algorithm on each training sequence to construct aare calculated. These scores can be used to calculate a
optimal alignment to the current model. Re-estimates ofog-likelihood ratio compared to a null model that this
transition and emission probabilities are calculated dhasesequence is a homologous RNA. Appropriate threshold-
on frequencies of observed state transitions and symbahg can then be applied to distinguish which sequences
emissions. This alignment of sequences to calculate nemost closely match the model.



3.5 Results extend SCFG-based models by allowing for insertions

) and deletions (ie gaps), thereby creating a more accu-
The paper presents results demonstrating the perfopate profile model of an RNA family. Such a model is

mance and accuracy of RNA covariance m(_)dels. Th%etter suited for searching databases at the DNA level.
authors make use of a database of 1415 aligned t_R_NAfhis idea is similar to how profile HMMs generalize
DNA sequences to select two randomly selected trainingy, o match-state-only HMMs (ie ungapped weight ma-

sets each of size 100, and a random test set also of sizg, models) typically used for DNA sequence analysis.
100. Two CMs were constructed from trusted allgnmentsSimp|y put, CMs are to SCFGs as profile HMMs are to
of the two training sets, and one CM was COnStrUCte%atch-staté-only HMMs.

from the trusted alignment of all 1415 tRNA sequences.

In addition, two CMs were constructed from randomly 4
selected sequences from an unaligned training set with
no information about secondary structure. The profile SCFGs and covariance model methods

Each model was used to produce multiple sequencwe’ve considered so far use information from many RNA
alignments of the set of 100 test sequences. The aligrsequences to perform RNA analysis. In fact, these meth-
ments were then compared to the trusted alignment to desds require a very large number of RNA sequences to
termine accuracy. The models constructed from trustedreate accurate prediction models. However, none of
alignments produced scores ranging from 93% to 95%hese methods takes into account the evolutionary his-
correct. Surprisingly, the models constructed from un-tory, or phylogenyof the sequences. Presumably, this
aligned sequences still produced scores ranging fronextra information may make RNA analysis models even
90% to 92% correct. more accurate.

Finally, the authors compare their best model against In this section, we consider two papers [8], [9] that
the then state-of-the-art tRNA detection program TR-take the phylogenetic tree of the RNA sequences into ac-
NASCAN to see how well the model can detect homol-count to create a SCFG-based model suitable for RNA
ogous RNAs in a database search. The best-trained Cigecondary structure prediction.
built from a trusted alignment of 1415 tRNA sequences .
outperformed TRNASCAN with respect to both sensitiv- 4-1 - SCFGs and Phylogenetic Trees

|ty and SpeCIfICIty In faCt, the best-trained CM yleldEd We first consider the origina| paper by Knudsen and
better than 99.8% true pOSitiveS with less than .2 falsq-|ein [8] Given an initial structural a"gnment of RNA
positives per Megabase searched. sequences and a phylogenetic tree relating these se-
The paper also presents a very interesting result showguences, the paper presents a two-part model composed
ing the amount of pairwise correlation information (in of a SCFG and an evolutionary model that can be used to
bits) captured by the secondary structure of a CM. Theyredict a single, common secondary structure describing
results suggest that a CM captures about twice as mucihe RNA sequences. In addition, if the phylogenetic tree
information about an RNA family as does an HMM is unavailable, the maximum likelihood (ML) estimate of
which can only consider primary sequence informationthe tree can be calculated from the model.
alone. Surprisingly, the results also show that tertiary While the ideas presented in this paper are very in-
structure information such as pseudoknots only conteresting, the paper itself is unfortunately rather poorly
tributes at most 2 to 3 additional bits of information. written and organized. The authors are not clear in many
This suggests that capturing tertiary structure informavof their definitions, and it is oftentimes difficult to un-
tion in an RNA analysis model is not crucial for the task derstand how and where the phylogenetic information is

Taking Phylogeny Into Account

of database searching. incorporated. Nonetheless, the description below hope-
) ) fully captures most of the paper’s intuition.
3.6 Discussion The model consists of two parts: a SCFG and a mu-

éational model, which is oftentimes confusingly referred
éo as an "evolutionary model” throughout the paper. The
SCFG used in the paper is quite simple:

This paper showed how covariance models can b
used to create accurate models of RNA families suitabl
for performing multiple alignments, secondary struc-

ture prediction, and database searching for homologous S — LS|L
RNAs. . _ F — sF§|LS
It turns out that covariance models are really just an L — s|sF3

alternate formalism for the SCFGs described in [12] with

a slight extension. The SCFG-based model does not alwhere s symbolizes an unpaired base and symbol-
low for insertions and deletions in the RNA sequence.izes paired bases in a stem. That is, ##& production
Thus, it is an ungapped model. CMs on the other handresults in the pairing of the surrounding baseand s.



This SCFG's parameters are estimated using the Insidéf the tree is not given. Given a tree topology, this calcu-

Outside algorithm described previously on a training setation essentially optimizes the branch lengths to find the

of folded RNAs. treeT" with this topology that maximizes the alignment
The mutational model consists of two matrices thatprobability P(Align|T, M ). The resulting tree is the ML

specify mutation rates between all possible bases X andstimate of the phylogenetic tree. However, the authors

Y and between all possible base-pairs XY and X'Y’. brush over how to actually estimate a good tree topol-

These mutational rates are also estimated from an initiabgy saying that exhaustive search, branch and bound, or

training set of folded RNA sequences. This mutationalheuristic methods can be used.

model presumable captures some sort of evolutionary in-

formation about the set of RNA sequences in the trainingt-1-1  Results

set. The authors build a model (both a SCFG and the
The paper refers throughout to "the model” as themutational or evolutionary model) using a training
combination of the trained SCFG and the estimated mudatabase of tRNAs and large subunit ribosomal RNAS
tation rates of the mutational model. (LSU rRNAs) with well-known and well-established sec-
Suppose then that we are given a test set of RNA seendary structures. The database was reduced slightly by
quences and their structural alignment and phylogenetieemoving sequences with unknown bases.
tree relating the sequences. The paper shows how to use Single base frequencies and base pair frequencies
a trained model to predict a common secondary structurguere estimated from counts of corresponding positions
for this test set of sequences. in the training set of sequences. To estimate mutation
The first task involves calculating the column proba-rates, all possible ordered pairs of sequences containing
bilities for both paired and unpaired columns in the testat least 85% identical base sequences were considered.
set’s alignment. This can be done using the model'sThe single base positions in the pairs were examined for
mutation rates and the test set's phylogenetic tree usingny differences in observed bases. Counters kept track
a well-known tree post-order traversal procedure develof the number of times base X and base Y were observed
oped in the early 1980s. at the same position in different sequences. These counts
Having calculated the column probabilities in the were then used to estimate the rates of mutation between
alignment using the model's mutation rates, it is possi-all possible bases X and Y. A similar technique was used
ble to calculate the probability of the entire alignmentto estimate base-pair mutation rates.
P(Align|T, M) given the phylogenetic tre€ and the Finally, the parameters of the SCFG part of the model
model M. This is done by summing over all possible were estimated using the standard Inside-Outside algo-
secondary structures describing the alignment. Luckilyrithm applied to the same database of training sequences.
enough, manipulation of this derivation results in aterm  Having constructed a representative model of RNA
equal to the product of the column probabilities in the sequences involving evolutionary history, the authors ap-
alignment. ply their model to predicting the secondary structure of a
It turns out that this sum, and therefore the probabil-set of 4 representative bacterial RNase P RNA sequences
ity of the alignment given the model and the tree can bewith known structures, phylogenetic tree, and alignment.
calculated using a dynamic programming algorithm thatThe 4 sequences were grouped into all possible pairs and
extends the view of the model's grammar to generate protriples to see how well secondary structure prediction ac-
ductions over columns of the alignment. Whensais  curacy improved as more sequences were added to the
used in a production rule, it instead refers to a columnalignment. The authors found that there were very sig-
in the alignment. Since such a column has a probabilitynificant improvements in prediction accuracy when se-
that we've already calculated, then we can multiply thisquences were added.
probability to the production probability each time sis The authors also found that if they used Clustal W to
produced by the grammar. A similar trick is performed perform the initial alignment, the prediction resultslstil
for production rules producing base pairs. By viewingshowed a high level of accuracy. The results were com-
the grammar in this way, we get a SCFG that is based opared against prediction results when no phylogenetic
the trained model but generates columns in alignments.information was taken into account. This was done by
Finding the most likely, common secondary structuregreatly extending branch lengths in the phylogenetic tree
that represents the test set’s alignment is then easy to deo as to essentially make the 4 sequences independent.
Simply apply the CYK algorithm for SCFGs that we saw Results indicated that adding phylogenetic information
previously to this "extended” grammar over columns in improves the accuracy of the results by roughly 5%.
alignments. Further comparisons were made between the covari-
Finally, the paper also points out that the ML estimateance model methods that we previously examined in [4].
of the phylogenetic tree can be calculated from the modeThe results showed that phylogenetic information can



make up for only having a small humber of sequenceslignment, the authors show that accuracy seems to in-
in the test set’s alignment. crease until an evolutionary distance of roughlg0 as

) defined by the "Jukes-Cantor” distanég:
4.2 Pfold: Improved Incorporation of Phyloge-

netic Information diy = —glog(l —4f/3) @)

The second paper [9] we consider is by the same au-
thors and improves on the algorithm we just saw for in-wheref is the fraction of sites, where the base at posi-
corporating evolutionary information into probabilistic tion « in sequencéand; differ in the pairwise alignment
models of RNA structure. [3].

The paper refers to the methods in [8] for predicting  The authors point out that their improved Pfold algo-
RNA secondary structure as the KH-99 algorithm. Thisrithm still lacks a grammar that more closely describes
paper improves upon the KH-99 algorithm by making real RNA structures. They claim that if such a gram-
it faster and more robust to alignment errors. The newmar was incorporated, the accuracy of the method would
method is called Pfold, and its implementation is still approach state-of-the-art energy minimization methods
used as a standard RNA secondary structure predictiosuch as Mfold [14] for a single sequence.
tool.

The Pfold algorithm makes the following changesto5 Probabilistic Models for Detecting Non-

the KH-99 algorithm: coding RNAs

L gaps in an allgnmen.t_are treated as unknqwn MU~ | this section we consider two papers that look at
cleotides with probability one for any nucleotide. \\pether or not probabilistic models of RNA structure

2. any nucleotide has a 1% probability of being anycan be usgd to effectively detect novel noncoding RNAs
other nucleotide. This allows the algorithm to be ("CRNAS) in a large genome sequence [10], [11]. Be-
more robust because it helps keep single sequencéguse NCRNA genes contain a much smaller amount
with slightly different structures from significantly of statistical information than protein-coding genes, it

ncRNA detection. How then do probabilistic models of

3. estimation of the phylogenetic tree is no longer per-RNA structure perform with such a weak signal? We
formed through the time-intensive ML estimation also briefly discuss a third paper that proposes practi-
procedure. Instead, standard estimation proceduresal speed-ups for some of the developed scanning algo-
are employed. rithms.

4. instead of using the CYK algorithm to find the most 5.1 Detecting ncRNAs using Secondary Struc-
likely secondary structure, a different algorithm is ture

used that finds the structure with the highest ex- _ _ _
pected number of correctly predicted positions in ~ The first paper we consider [10] considers whether or

the alignment. not RNA secondary structure is a strong enough statisti-
cal signal for detecting new ncRNAs, and whether or not
4.2.1 Results a standard SCFG-based model can detect ncRNA genes

Pfold was tested on the same test set used in the orign a genome.
inal paper [8]. The results were essentially identical ex- The paper constructs two models of RNA folding.
cept that Pfold showed better performance. Most im-Both of these models are based on a straightforward
portantly, the improvement in computation time allows SCFG that models RNA secondary structure in a man-
Pfold to consider many more sequences than the KH-9@er similar to what we've already discussed. The first
algorithm. This makes the algorithm more practical formodel, referred to as the "probabilistic model,” uses
RNA secondary structure prediction. training RNA sequences to derive probability parame-

The authors find that given a good initial structural ters for the grammar via the standard Inside-Outside al-
alignment, prediction of a consensus secondary struogorithm. The second model, referred to as the "thermo-
ture improves as the evolutionary distance of the alignedlynamic model,” instead derives these parameters from
sequences increases. This is because more covariprevious experimentally determined thermodynamic in-
tion information is yielded by larger evolutionary dis- formation.
tances. However, larger distances necessarily make the A scanning algorithm for finding new RNAs in a
sequences more difficult to align, and a single consensugenome sequence is then developed for each model. For
structure may not accurately represent many diverged sehe probabilistic model, the scanning algorithm essen-
guences. When using pairs of sequencansdj for an  tially uses the Inside algorithm to calculate log-odds



scores for every subsequence of length w in the The authors reluctantly conclude that then state-of-
genome sequence. This log-odds score is the log ratithe-art probabilistic models and algorithms for RNA
of the likelihood that this subsequence was generated bgecondary structure prediction are unable to distinguish
the model to the likelihood that it was generated by ancRNAs from random sequences. This negative result
null model. The null model emits nucleotides accord-holds true even if the model's parameters are based on
ing to an estimated ncRNA base composition. Appro-thermodynamic information.

priate thresholding can then be applied to the scores to

determine whether or not a subsequence is a match to tfe2  Detecting ncRNAs using Comparative Se-
model. qguence Analysis

The thermodynamic model's scanning algorithm is |, this section we consider an extension of the work of

only slightly different, scoring only subsequences of a1 0] for detecting ncRNAs [11]. This paper attempts to
fixed lengthw and using a CYK algorithm to calculate ,sg comparative sequence analysis between aligned pairs

Z-scores instead of log-odds scores. A Z-score calCupf homologous sequences (for example, a pairwise align-
lates how many standard deviations the folding energy,ant of two related genomes) to find RNA genes.

of the subsequence differs from the average energy of all The pasic idea is that we can find conserved RNAs

permutations of the subsequence. by looking for locations in the alignment where the pat-
511 R tern of mutation between bases and base-pairs suggests
A esults . .
a region of conserved secondary structure. Since the
Initial results were promising for the probabilistic secondary structure of RNAs tends to be more impor-
model's scanning algorithm. Using a log-odds ratiotant than the primary sequence, then it makes sense to
larger than 9.1, the authors determine that scanning witlise comparative sequence analysis to find regions where
a maximum window length ofv = 100 nucleotides base and base-pair mutations exist that still conserve a
will yield no more than 10 false positives per megabasecommon secondary structure.
The hits found when testing a number of sequences with  The authors note though that this technique will only
known RNA genes were clearly above this threshold.work for conserved structural ncRNAs.
However, they also observed a clear correlation between The authors construct three probabilistic models of
the relative CG bias in the RNA genes and the strengthstructurally conserved RNA pairwise alignments that can
of the detected signal. be used to scan for structurally conserved RNAs in a
To understand what role the effects of this CG biasgiven genome pairwise alignment. The basic idea is very
plays in their scanning algorithm, they composed a newsimilar to the scanning algorithm proposed in [10]. The
scanning algorithm that simply looks for CG bias in a main difference is that the models generate aligned pairs
genome to find RNA genes. The results of using thisof RNA sequences instead of a single RNA sequence.
scanning algorithm were remarkably similar to the scan-That way, the scanning algorithm can scan a pair of
ning performed with structural information. Even after aligned genomes to find structural conserved RNA re-
randomly shuffling the RNA gene sequences, the strucgions that match the model.
tural scanning algorithm was still largely unaffected. In The model that is particularly relevant to our analy-
addition, embedding an RNA gene into a random sesis is based on pair stochastic context-free grammar
guence of identical base composition resulted in an in{Pair-SCFG). Such a grammar is identical in nature to the
ability of the structural scanning algorithm to find the SCFGs we've already seen. However, Pair-SCFGs gen-
RNA gene. erate a pair of sequences simultaneously. That is, each
These tests unfortunately suggested that the detect@roduction generates symbols in two different sequences
was actually latching onto the increased amount of CGat the same time. The authors extend the SCFG of [10] to
base composition of RNA genes as opposed to any se@ pair-SCFG that generates two aligned RNA sequences.
ondary structure signal. These experiments lead the au- After training the pair-SCFG model, one can then per-
thors to conclude that probabilistic models can detecform a scanning algorithm on a pairwise aligned set of
ncRNAs in a genome simply because of a CG base comgenome sequences to find any matches to the model.
position bias and not as the result of secondary structur€his scan makes use of an extension of the Inside algo-
information. rithm for SCFGs in order to calculate log-odds scores
On the flip-side, similar results were also discoveredof all pairs of aligned subsequences of lengthw in the
for the thermodynamic model’s scanning algorithm. Ingenome alignment. Once again, appropriate thresholding
fact, these results were even more discouraging since Zan be applied to determine which pairs of subsequences
scores assume that the background composition is ranmost closely match the model.
dom. This is certainly not the case in most genome se- However, it is usually desirable to forget about the in-
guences. put pairwise alignment and allow the pair-SCFG to opti-
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mally realign the input sequences to the model. This igo the vast computational overhead needed.
typically desirable since input alignments oftentimes wil

not have considered secondary structure. Thus, the aligrd.3  Speeding-up Pair-SCFG Alignment for
ment around structurally conserved RNA regions may be NcRNA Detection

suboptimal. However, the authors point out that realign-
ing a pair of sequences of lengthand lengthn respec-
tively to a pair-SCFG takes tim@(n3m?), which is far
too prohibitive.

A fairly recent paper [7] looks at ways to speed up the

alignment of pairs of sequences to a pair-SCFG. In par-

ticular, the paper shows how to speed up the standard In-

side and CYK algorithms for pair-SCFGs needed by re-

521 Results gli?lanent and scanning algorithms like those discussed
in [11].

The authors first test their trained models, whose im- The details of the a|gorithms are Compncated' but the
plementation was called QRNA, on simulated aligned sejntyition is as follows. The algorithms for pair-SCFGs
guences to see how base composition affects detectiog,qrk by computing likelihoods for every possible pair
Wary of the tendency for these SCFG-based models tef substrings of the two sequences. However, if the sec-
latch onto CG bias in the sequences, the authors genegndary structure of each RNA sequence is known (or we
ated a range of CG composition sequences for testing thgave a best guess for the structure), then the recursion in
scanning algorithm on. They found again that the specithe algorithms can be limited to considering only pairs
ficity of the algorithm degrades as the CG bias fluctu-of substrings consistent with the known secondary struc-
ates outside of a content range of 45% to 60%. To deajyre. The term "fold envelope” is used to describe a valid
with this, they tuned their model by setting the parame-set of substrings consistent with the known structure for
ters based on the CG CompOSition Of the input alignmentany one Sequence in the a”gnment_ Computing likeli-
However crude this method, it does seem to offset thgygods conditioned on secondary structures is then trans-
bias created by CG-rich input sequences. formed to computing fold envelopes.

They then took single RNA genes from a given fam-  These new algorithms can show dramatic increase in
ily and used these sequences as a BLASTN query t@peed. In fact, for some extreme cases, the reduced run-

find all genes in the same family. They retained thosening time is onlyO(mn) wheren andm are the lengths
found BLASTN alignmentS greater than 50 nUCleotideSOf each of the a"gned sequences respective'y!

in length, with an E-value< 0.01, and with an overall

similarity of _2 65%. These resulting alignments were 6 SCFG Design Considerations

then run as input to QRNA to score whether or not they

were RNAs. The authors found that there is a tradeoff None of the papers we have considered discusses how
between needing a BLASTN alignment that is correctto choose an underlying grammar for a SCFG-based
enough but also dissimilar enough to highlight mutationsmodel. Indeed, more complex grammars lead to more
in base-pairs of the RNA secondary structure. The auparameters that need to be estimated from training data.
thors choose to analyze only BLASTN alignments in aHowever, overly simple grammars may fail to capture
"sweet spot” of between 65% and 85% nucleotide idenimportant relationships or may bias prediction results to-
tity. wards a very narrow model.

Testing against an entire genome was done by align- A recent paper [2] attempts to answer the question of
ing the E. Coli and Salmonella typhi genomes usingwhat small, simple SCFG designs are best for RNA sec-
known BLASTN alignments. The genomes were bro-ondary structure prediction?
ken into 3 components. The scanning algorithm used a This paper defines the notion of "structural ambigu-
threshold log-odds score of 5 bits to classify RNAs inity” of a grammar: a grammag is structurally unam-
windows of 200 nucleotides advanced at 50 nucleotidéiguous if for every RNA sequence generated by,
intervals. Results were not overly promising, showingevery unique secondary structuremdfias only one parse
that only 29% of known RNAs were detected using thistree inG that represents it. The authors show that if the
scanning algorithm. grammar is not structurally unambiguous, then the CYK

The authors suggest that the failure was largely due t@lgorithm for determining the optimal secondary struc-
the lack of BLASTN alignments that fell in this "sweet ture can yield suboptimal results. This turned out to be
spot” identify range. Therefore, the authors concludea practical concern for most of the grammars tested. As
that non-structurally aware initial alignments are the-lim a result, the authors therefore focus on developing a set
iting factor in such a probabilistic-based scanning algo-of small, structurally unambiguous grammars to see how
rithm’s detection accuracy. Clearly, performing an ini- well they perform.
tial, optimal realignment of the sequences to the model The authors compared their set of grammars against
would be helpful, although this was not undertaken duestandard energy minimization methods for predicting
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RNA secondary structure. They found that the grammaxsuch as pseudoknots or base-triples) into the predicted
used by Knudsen and Hein in Pfold [9] and discussedRNA structures. This paper proposes usingaximum
previously performs quite well considering its simplic- weighted matching methddr RNA secondary structure
ity. prediction that can model any possible tertiary structure.
One minor shortcoming of this paper is that the au- The basic idea is simple enough. Given an RNA se-
thors provide no formal proofs that their grammars arequence, construct a graph as follows: for every base in
structurally unambiguous. In a recent paper, we modthe sequence, add a vertex to the graph. Then, add edges
ify some of their formalisms to provide a framework for between all possible pairs of vertices. Edges are given
proving grammars to be structurally unambiguous. Weweights based on either phylogenetic or thermodynamic
then use this framework to prove that all of the gram-scores between possible base-pairs (such as mutual in-
mars in the paper are in fact structurally unambiguous agormation that we discussed previously), experimental
needed. data, or a combination of both. A standard algorithm
can then be applied to find the matching in the graph
7 Non-Probabilistic Methods for RNA Sec-  where the sum of the edge weights in the matching is
ondary Structure Analysis: Overview maximal (maximal weighted matching). The algorithm
) ) ) ) is called "Gabow’s algorithm” and works by continually
In this section we briefly mention some of the pjiding the optimal weighted matching féredges by
standard non-probabilistic methods for RNA Secondaryaugmenting the optimal weighted matching using 1

structure analysis. The goal of this paper has been t@4ges. The resulting matching corresponds to what bases
look at probabilistic methods. However, it is impor- 5. paired in the RNA sequence.

tant to understand that many standard and popular non- The paper of [13] also implements a clever post-

probablhstlc methods also exist and are used with Vary'processing filter that removes spurious base-pairs from
ing degrees of success. the predicted structure. It does so by removing match-
ings that resulted because of intermediate matching per-
formed during the augmentation steps of Gabow’s algo-
Perhaps the most popular method of RNA secondaryithm. It turns out that important matchings tend to re-
structure prediction uses a technique known asiiie-  main fixed throughout the course of the algorithm.
mum free energy meth¢MIFE) for folding a single RNA The great promise of this technique is that by sim-
sequence. This method uses thermodynamic parametepfy playing with the structure of the graph and the edge
to construct a secondary structure of a single RNA seyweights, any type of base-pair relationship, including ter
quence that minimizes its total free energy. Moleculesiary relationships, in RNA structures can be predicted.
with less free energy are typically more stable structureshe paper implements an RNA folding algorithm using
in nature. Therefore, a minimum energy structure repthe maximum weighted matching method with a num-
resents an optimal energetic folding. This technique iser of edge weight heuristics. The paper finds that the
employed in two very popular implementation packagespredicted structures are oftentimes nearly as good as the

called Mfold [14] and RNAfold [6]. These two packages structures determined manually through lab experiments.
have been around for many years and are still commonly

used aghe benchmark for evaluating new probabilistic 8 Summar
methods. y

This technique is usually augmented in practice by |, this paper, we've attempted to provide a literature
combining a comparative sequence analysis approacheyiew of some of the most important papers on proba-
Many methods of comparative sequence analysis usingjjistic methods for RNA secondary structure analysis.
MFE-style heuristics have been applied. While a detailedy,e examined the original papers on SCFG-based and
discussion of such techniques is beyond the scope of thig\1.pased analysis. From there we showed how more
paper, a good overview of these various methods can bgcent work has attempted to incorporate phylogenetic
found in a recent survey paper by Gardner and Giegericthformation into the models. We also discussed newer

[5]- techniques for detecting ncRNAs using a combination of
7.2 Maximum Weighted Matching Method comparative sequence analysis and SCFG-based mode_ls,
and how to address issues of algorithm speed and effi-

Another recent method for RNA secondary structureciency for the related Pair-SCFG-models. The issue of
prediction uses a graph-theoretic approach [13]. ThisSCFG design was also addressed. Finally, we provided a
method is particularly clever because of its simplic- brief overview of some of the standard non-probabilistic
ity. The majority of methods we've discussed are in- methods that exist as further reading for anyone inter-
capable of incorporating tertiary structure information ested in RNA secondary structure analysis.

7.1 Minimum Free Energy Methods
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We should note that there are still a great many varia{12] Yasubumi Sakakibara, Michael Brown, Richard
tions on the basic probabilistic models we discussed. For
example, there has been a good deal of work on combin-
ing energy calculations with evolutionary information for
RNA secondary structure prediction. The curious reader
should find ample resources in the reference sections of
the papers discussed in this paper. (1
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