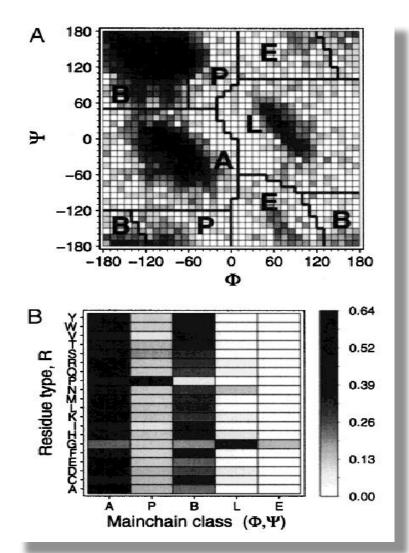

CLUSTERING CONFORMATIONS of PROTEIN FRAGMENTS

CSE 527 Paul Murphy 12/15/04


PROTEIN STRUCTURE

Amino acids have *two rotable bonds* along their backbone [Creighton (1993)]

The *conformation of a polypeptide* is a function of the dihedral angles of its backbone. [Kuhlman,Baker (2003)]

The dihedral angles formed by these bonds can be viewed in a *Ramachandran plot* [Fiser, Sali (2000)]

CANONICAL STRUCTURES of POLYPEPTIDE FRAGMENTS

Structure	Sequence ^a		Conformation ^b (°) Frequency							Frequency
	1 2 3 4 X-G-G-X			$\phi_{2,} + 55$		φ2,		°		
9				+65	or —125	-105	+10°			6/6
	X-G-X-X			+70	-115	-90	0°			6/7
1===4	X- X- G- X			+ 50	+45	+85	-20^{d}			7/8
	X- X- X- X	φ1	ψ1	$+60 \\ \phi 2$	$+20 \\ \psi 2$			φ4	ψ4	4/4
· · · ,	X- X- X- G	- 135	+175	-50		-95		+145	+155	4/4
2^{-3}_{4}	1 2 3 4 X X X X	$\begin{array}{ccc} 5^{g} & \phi 2 \\ G & -75 \end{array}$	$\frac{\psi^2}{-10}$	$\phi 3 - 95$	ψ 3 −50		ψ4 0	$\phi 5 + 85$	$\psi 5 - 160$	3/3
1 = = = 5	хххх	X +50	+ 55	+65	-50	-130	-5	-90	+130	1/1(3/3)
2 3 4	1234 G	5 ^h \$\phi_2\$	ψ2	φ3	ψ3	φ4	ψ4			
	X- X- X- N- D	X -60	-25	-90	0	+ 85	+10			13/15
34	1 2 3 4	5 6 ⁱ φ2 G	ψ2	φ3	ψ3	φ4	ψ4	φ5	ψ5	3/3
	X- X- X- X-		-30	-65	-45	-95	-5	(+70	+ 35	3/3 2/2 1/1

Table 2Conformation of hair-pin turns

Some substructures of proteins have a *discrete set of typical conformations* related to sequence [Chothia, Lesk (1987)]

MOTIVATION FOR CLUSTERING

- Classification
- Simulation
 - Protein structure prediction algorithms require exploration of a large conformation space
 - Clustering can (potentially)...
 - Positively bias the search towards favorable regions of conformation space
 - Address questions regarding the <u>thoroughness of</u> <u>sampling</u>

PROJECT DESCRIPTION

- Input
 - Fragments of proteins

derived from a nonredundant database of high resolution crystal structures

Several different
 <u>clustering algorithms</u>

 Assess coverag conformation space by lool at <u>BIC score</u> (where applica

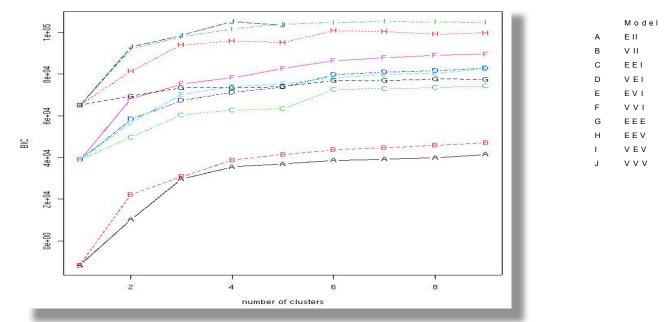
 Assess classification by lool at <u>mutual information</u>
 classification based on seque

classification based on seque

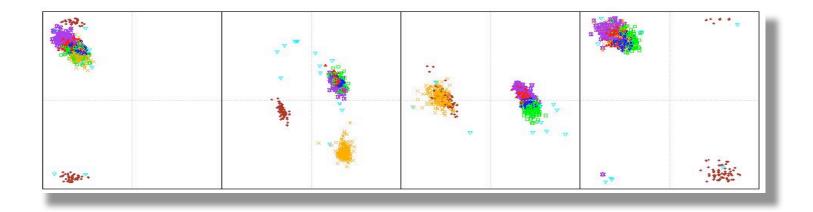
• Ou

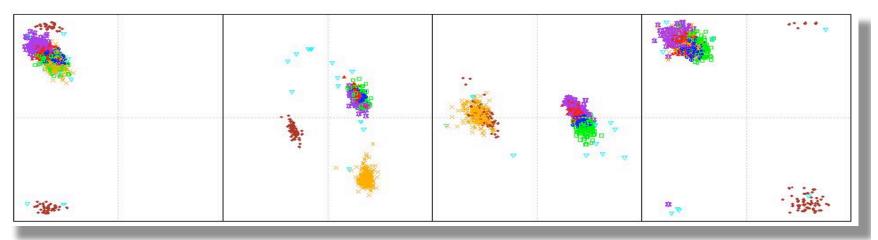
FRAGMENT LIBRARY

 Using a set of 3526 PDB files, each containing high resolution 3D coordinates of one or more polypeptide chains, built a <u>database of</u> <u>fragments</u> containing several pertinent fields

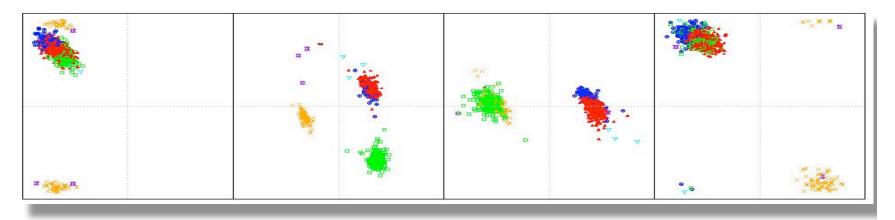

	t * from fragment	- /		++	·+	+	++	+
			$hm_1 phi_2 pi$	_ · _ ·	1. 1.1		·	res_num_b +
			3.0105 -1.8506				136	138
2 -2.5701	2.7472 -3.0602	1.0333 0.7644	-3.0757 -1.2904	-0.5910 -3.03	348 RKQ E E	1a21 A	185	187
3 -1.2795	2.0514 -3.0934	-1.3064 2.327	9 3.1149 -2.0051	2.9817 3.13	74 GLG E E	1a26	297	299
4 -2.2411	2.7711 -3.1325	-1.1222 2.643	7 -3.1354 -2.514	2.2891 -3.13	886 YNE E E	1a26	333	335
5 -1.2686	2.3600 3.1325	-1.9649 -0.416	9 -3.0400 -2.1999	2.2437 2.98	27 ERI E E	1a2z A	80	82
5 -1.8460	2.5746 -3.0573	-1.5097 0.938	7 -3.0317 -2.5344	1 2.3044 3.01	66 VNI ESE	1a2z A	84	86
2.0767	-3.0426 -3.0942	-1.5326 1.219	3 -3.1249 -2.5150	5 2.7913 3.00	96 GDI ESE	1a3k	125	127
3 -1.2955	2.4067 3.1035	-1.2057 -0.6474	4 3.0700 -1.7423	1.6883 -3.05	14 HKD ESE	1a40	261	263
) -1.7668	2.2895 -3.1079	-2.4325 2.984	5 -3.1146 -2.8288	3 0.9642 -3.10	046 SHE E E	1a41	82	84
			++					- 1

9 rows in set (0.04 sec)

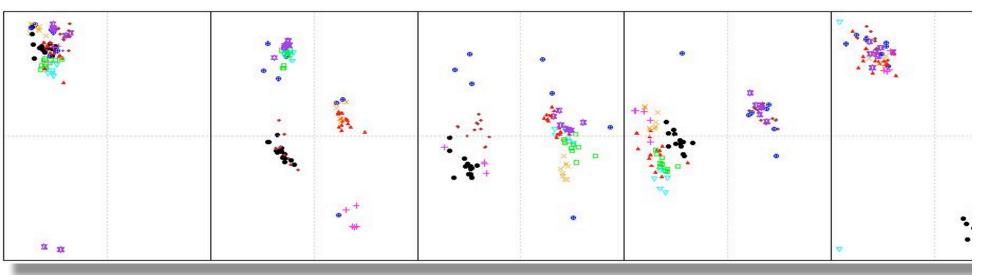

CLUSTERING TECHNIQUES

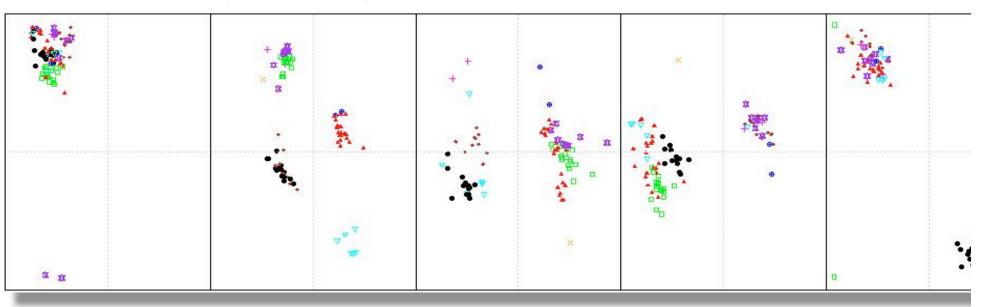

- Hierarchical
 - R function *hclust*
- Partitional
 - Mclust R package [Fraley,Raftery (2000)] EMclust
- Clustered cbind(sin(theta),cos(theta)) since space is periodic
- Chose n clusters such that BIC score was maximized, used same n for hierarchical clustering

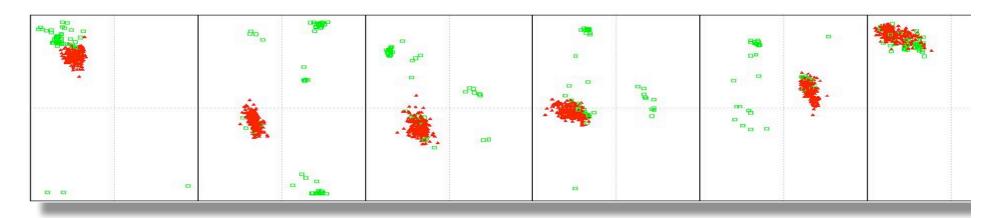
• Input: 1156 x *4-residue hairpin turns*



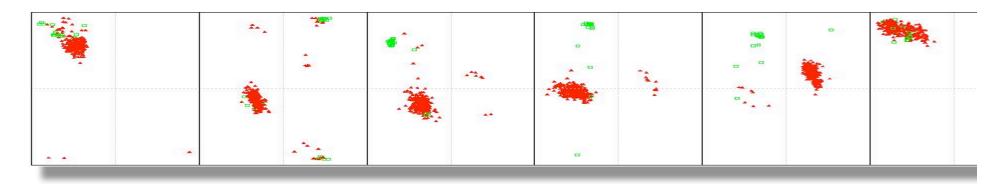
Output: Highest BIC: 7 clusters, VEV model (Equal shape, Variable volume & orientation)




• Model based clustering (again)



 Hierarchical clustering – different results wrt classification of outliers


Model based (VVI, 11 clusters) Hierarchical (11 clusters)

Model based (VVV, 2 clusters)

Hierarchical (2 clusters)

RELATIONSHIP TO SEQUENCE

- Clustered sequence in an *ad hoc* way:
 - Translate sequence 20 letter amino acid code to
 2 letter amino acid code (Glycine or Other)
 - Each of n-1 most frequent sequences is its own cluster
 - All other sequences are a single cluster

MUTUAL INFORMATION

- Quantifies how much information about the value of one random variable is reveal by knowing the value of another random variable
- More appropriate than chi-square to use in this context, since each pair (x,y) is likely not to be observed >= 5 times
- Account for sampling bias by permuting the data and calculating independent and excess information

$$I(x, y) = \sum_{x,y} p(x)_{\log_2 p} (x, y) (x)_{p(y)}$$

$$\widehat{\Gamma_E}(\mathbf{x},\mathbf{y}/D) = I(\mathbf{x},\mathbf{y}/D - \frac{1}{N}\sum_{i=1}^{N}I(\mathbf{x},\mathbf{y}/D))$$

- Mutual Information
 - More "self-information" in model based clusters
 - this just indicates that distribution of hierarchical clusters are not as balanced as model based clusters

Length	S v s S	H v s H	M v s M	S v s H	S v s M	H v s M
4– S	Some rela	tion to s	equence	0.7	0.7	1 . 1
5	2.2	2.3	2.4	0.9	0.8	2
6	1	0.3	0.6	0.03	0.2	0.15

S = Sequence, H = Hierarchical, M = Model-based

REFERENCES

Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. Journal American Statistical Association 97:611:631 (2002a)

Fraley C and Raftery AE (2002b). MCLUST:Software for model-based clustering, density estimation a discriminant analysis. Technical Report, Department of Statistics, University of Washington. See http://www.stat.washington.edu/mclust.

Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. 2000 Sep; 9(9):1753-73

Creighton T. Proteins: Structure and Molecular Properties. Freeman (1993)

Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a novel globular proteir with atomic level accuracy. Science. 2003. Nov 21(5659): 1364-8.

Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Bi 1987 Aug 20;196(4):901-17.

Cline MS, Karplus K, Lathrop RH, Smith TF, Rogers RG Jr, Haussler D. Information-theoretic dissect pairwise contact potentials. Proteins. 2002 Oct 1; 49(1):7-14.