CpG Island Modeling Using Graphical Models

Gang Ji, Tim Hg Dept. Electrical Engineering

Lingyun Huang Dept. Bioengineering

CpG Island

CpG island

 Short stretch in DNA with higher frequency of CG sequence

 Located around the promoter of house keeping Genes or other genes frequently expressed in a cell

 Due to different methylation level in inactive and active genes

CpG Island Modeling

Hidden Markov Models States: A⁺₋, C⁺₋, G⁺₋, T⁺₋ Observations: A, C, G, T

HMMs for CpG

HMMs are good. But...

- Conditional independent statements too strong
- $-X_t \perp X_{\hat{t}} \mid S_t$

HMMs for CpG

HMMs are good. But...
 – Duration Modeling
 State occupancy decreases exponentially with time: d_i(t) = a_{ii}^t(1 - a_{ii}) → poor duration modeling
 – Conditional independent statements too strong X_t ⊥⊥ X_f | S_t
 Hard to effectively handle non-stationary observations that are highly correlated.

Our Proposed Improvements

Language models
Change the structure of graph
Other graphical families (MRFs)

HMM Training using HTK

Training Data:

- Discrete Observations: Mapped in indices
 - Discrete HMMs
- With Model Alignment:
 - Performed Baum-Welch training within the model:

- Since only the state sequences are hidden

Decoding using HMM and Language Model

the Cost Function:

 $\hat{W} = \arg \max_{W} P(W \mid O) = \arg \max_{W} \frac{P(W)P(O \mid W)}{P(O)}$ $= \arg \max_{W} P(W)P(O \mid W)$ $= \arg \max_{W} [\log P(W) + \log P(O \mid W)]$ $= \arg \max_{W} [\log P(W) + \log P(O \mid W)]$ Language Model HMM

Issues

- P(O|W) is usually underestimated due to the fallacy of the Markov and independence assumptions. \rightarrow give the language model too little weight.
- Introduce language model weight (*LW*) to balance the two probability quantities.
 Usually *LW* > 1.0 and it is task dependent
- The Cost Function becomes:

 $W = \arg\max_{W} [LW * \log P(W) + \log P(O | W)]$

Decoding Framework

No language model

Assuming all sequences are equally likely

WP: word penalty to compensate HMM prob.

Decoding with bigram LM $-P(W) \approx P(w_1)^* P(w_2|w_1)^* P(w_3|w_2) \dots P(w_n|w_{n-1})$

Evaluation Corpus

Gene sequence - EMBL, European Bioinformatics Institute CpG island alignment - European Bioinformatics Institute We used – Whole corpus: 1710 sq. - Training: 1539 sq. – Testing: 171 sq.

Corpus Statistics

	CpG island subsequence	DNA sequence
Maximum	3340	185775
Minimum	181	44
Mean value	465	3787

Evaluation Metric

No standard quantitative metric
 Precision/Recall

- Precision
 - P: True positive / all hypothesized truth
- Recall
 - R: True positive / all truth

Evaluation Metric

- No standard quantitative metric
 Precision/Recall
 - Precision
 - P: True positive / all hypothesized truth
 - Recall
 - R: True positive / all truth
 - F score (when no free parameter) Harmonic mean of precision and recall $\frac{1}{E} = \frac{1}{P} + \frac{1}{R}$

Language Model Results

	Precision	Recall	F Measure
Baseline	29.5%	77.7%	0.214
LM bigram	36.3%	75.0%	0.245

Graphical Models

Graphical Models

- Nodes: random variables
- Edges: encodes conditional independent statements

Graphical Models

Different graphical models Directed: Bayesian networks Undirected: Markov random fields Mixture of the two Next work Dynamic Bayesian networks (DBNs) Conditional random fields (CRFs)

DBNs

Dynamics Bayesian networks

- Directed graphical model
- Prologue/chunk/epilogue
- Unroll to fit series
- HMM is a DBN

Our DBN Models

Recall

- HMM CI statements too strong
- Idea: add dependencies in gene sequences
- 8 hidden states

Training

Standard EM learning

Decoding

Junction tree algorithm

 Form junction tree from the graph
 Message passing along the tree
 Viterbi assumption

ROC Curves

Receiver operating characteristic curves – Free parameter to tune between precision

and recall

12/08/2004

CpG Island Modeling Using Graphical Models

DBN Results

DBN Conclusions

Conclusions

- Adding links between gene observations helps a lot
- Equal error rates

model	EER	rel. imp.
baseline	38.8%	
bigram	25.5%	34.3%
trigram	22.4%	42.3%

Conditional random field for labeling sequence

- An undirected acyclic graph
- Random field

 Definition: for X is a random variable over observation sequence and Y is a random variable over state sequence.

(X,Y) forms a conditional random field

CpG Island Modeling Using Graphical Models

Conditional random field (CRF) example

Probabilistic Models of CRF

– Local features of CRF is specified by a vector *f* including

state feature

transition feature

Global feature F(y,x)

Conditional probability distribution defined by the CRF

$$p_{\pmb{\lambda}}(\boldsymbol{Y}|\boldsymbol{X}) = \frac{\exp \boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{Y},\boldsymbol{X})}{Z_{\pmb{\lambda}}(\boldsymbol{X})}$$

where

$$Z_{\lambda}(x) = \sum_{\boldsymbol{y}} \exp \lambda \cdot F(\boldsymbol{y}, \boldsymbol{x})$$

12/08/2004

Decoding by CRF

The most probable label sequence for input sequence x is

$$\begin{split} \hat{y} = \mathop{\arg\max}_{\boldsymbol{y}} p_{\boldsymbol{\lambda}}(\boldsymbol{y}|\boldsymbol{x}) = \mathop{\arg\max}_{\boldsymbol{y}} \boldsymbol{\lambda} \cdot F(\boldsymbol{y}, \boldsymbol{x}) \\ \mathbf{y} \end{split}$$

The algorithm is also Viterbi

Training of CRF

- Generalized iterative scaling

given training set $T = \{(x_k, y_k)\}_{k=1}^N$, which we assume fixed for the rest of this section:

$$\begin{aligned} \mathcal{L}_{\boldsymbol{\lambda}} &= \sum_{k} \log p_{\boldsymbol{\lambda}}(\boldsymbol{y}_{k} | \boldsymbol{x}_{k}) \\ &= \sum_{k} \left[\boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{y}_{k}, \boldsymbol{x}_{k}) - \log Z_{\boldsymbol{\lambda}}(\boldsymbol{x}_{k}) \right] \end{aligned}$$

To perform this optimization, we seek the zero of the gradient

$$\nabla \mathcal{L}_{\lambda} = \sum_{k} \left[F(y_k, x_k) - E_{p_{\lambda}(\boldsymbol{Y}|\boldsymbol{x}_k)} F(\boldsymbol{Y}, x_k) \right] \quad (2)$$

Fei Sha et.al 2003

In the project

Training data

Long sequence was truncated every 100 bits to get non-CpG island or CpG island sub-sequences labeled with 1 (non-CpG island) and 2 (CpG island) respectively.

Testing data

The whole sequence as inputTruncated sub-sequences as input

Software

 A CRF toolkit in Java from <u>http://crf.sourceforge.net</u> by Dr. Sunita Sarawagi in IIT Bombay

Result – Disappointed, it DID NOT pick up any CpG island

The possible reason — Truncated strategy does not fit the tool — Unfamiliar with the source code