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CpGCpG Island Island
CpGCpG island island
–– Short stretch in DNA with higher frequency ofShort stretch in DNA with higher frequency of

CG sequenceCG sequence

–– Located around the promoter of houseLocated around the promoter of house
keeping Genes or other genes frequentlykeeping Genes or other genes frequently
expressed in a cellexpressed in a cell

–– Due to different Due to different methylationmethylation level in inactive level in inactive
and active genesand active genes
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Methylased cytosine
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CpGCpG Island Modeling Island Modeling

Hidden Markov ModelsHidden Markov Models
–– States:States:

–– Observations:Observations:
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HMMsHMMs for  for CpGCpG

HMMsHMMs are good.  But are good.  But……
–– Conditional independent statements tooConditional independent statements too

strongstrong

–– ˆ |t tt
X X S!!
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HMMsHMMs for  for CpGCpG

HMMsHMMs are good.  But are good.  But……
–– Duration ModelingDuration Modeling

State occupancy decreases exponentially withState occupancy decreases exponentially with
time: time: ddii((tt) = ) = aaiiiitt(1 - (1 - aaiiii) )  poor duration modeling poor duration modeling

–– Conditional independent statements tooConditional independent statements too
strongstrong

Hard to effectively handle non-stationaryHard to effectively handle non-stationary
observations that are highly correlated.observations that are highly correlated.

ˆ |t tt
X X S!!
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Our Proposed ImprovementsOur Proposed Improvements

Language modelsLanguage models

Change the structure of graphChange the structure of graph

Other graphical families (Other graphical families (MRFsMRFs))
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Topology of the Topology of the HMMsHMMs
Two Two HMMsHMMs were used: were used:
–– NN: non-island: non-island

–– YY: island: island

Strictly Left-to-Right Strictly Left-to-Right HMMsHMMs::

N:

Y:
Emitting States

Null States
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HMM Training using HTKHMM Training using HTK

Training Data:Training Data:
–– Discrete Observations: Mapped in indicesDiscrete Observations: Mapped in indices

Discrete Discrete HMMsHMMs

–– With Model Alignment:With Model Alignment:
Performed Baum-Welch training within the model:Performed Baum-Welch training within the model:

–– Since only the state sequences are hiddenSince only the state sequences are hidden
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Decoding using HMM and Language ModelDecoding using HMM and Language Model

the Cost Function:the Cost Function:

Language Model HMM

^ ( ) ( | )
argmax ( | ) argmax

( )W W

P W P O W
W P W O

P O
= =

argmax ( ) ( | )
W

P W P O W=

argmax[log ( ) log ( | )]
W

P W P O W= +
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IssuesIssues
–– PP((OO||WW)) is usually underestimated due to the is usually underestimated due to the

fallacy of the Markov and independencefallacy of the Markov and independence
assumptions. assumptions. give the language model toogive the language model too
little weight.little weight.

–– Introduce language model weight (Introduce language model weight (LWLW)  to)  to
balance the two probability quantities.balance the two probability quantities.

Usually Usually LWLW > 1.0 > 1.0 and it is task dependent and it is task dependent

–– The Cost Function becomes:The Cost Function becomes:
^

argmax[ *log ( ) log ( | )]
W

W LW P W P O W= +
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No language modelNo language model
–– Assuming all sequences are equally likelyAssuming all sequences are equally likely

Decoding FrameworkDecoding Framework

Y

N

S E

WP: word penalty to compensate HMM prob.
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Decoding with Decoding with bigrambigram LM LM
–– PP((WW) ) ≅≅  PP((ww11)*)*PP((ww22||ww11)*P()*P(ww33||ww22))……P(P(wwnn||wwnn-1-1))

Y

N

LW*log P(N|N)

LW*log P(Y|N) LW*log P(N|Y)
LW*log P(Y)

LW*log P(N)

S E

LW*log P(Y|Y)
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Evaluation CorpusEvaluation Corpus

Gene sequenceGene sequence
–– EMBL, European Bioinformatics InstituteEMBL, European Bioinformatics Institute

CpGCpG island alignment island alignment
–– European Bioinformatics InstituteEuropean Bioinformatics Institute

We usedWe used
–– Whole corpus: 1710 sq.Whole corpus: 1710 sq.

–– Training: 1539 sq.Training: 1539 sq.

–– Testing: 171 sq.Testing: 171 sq.
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Corpus StatisticsCorpus Statistics

37873787465465Mean valueMean value

4444181181MinimumMinimum

18577518577533403340MaximumMaximum

DNADNA
sequencesequence

CpGCpG island island
subsequencesubsequence
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Evaluation MetricEvaluation Metric
No standard quantitative metricNo standard quantitative metric

Precision/RecallPrecision/Recall
–– PrecisionPrecision

PP: True positive / all hypothesized truth: True positive / all hypothesized truth

–– RecallRecall
RR: True positive / all truth: True positive / all truth

reference
hypothesis
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Evaluation MetricEvaluation Metric
No standard quantitative metricNo standard quantitative metric

Precision/RecallPrecision/Recall
–– PrecisionPrecision

PP: True positive / all hypothesized truth: True positive / all hypothesized truth

–– RecallRecall
RR: True positive / all truth: True positive / all truth

–– F score (when no free parameter)F score (when no free parameter)
Harmonic mean of precision and recallHarmonic mean of precision and recall

1 1 1

F P R
= +



12/08/200412/08/2004 CpGCpG Island Modeling Using Graphical Models Island Modeling Using Graphical Models 1818

Language Model ResultsLanguage Model Results

0.2450.24575.0%75.0%36.3%36.3%
LMLM

bigrambigram

0.2140.21477.7%77.7%29.5%29.5%BaselineBaseline

FF
MeasureMeasure

RecallRecallPrecisionPrecision
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Graphical ModelsGraphical Models

Graphical ModelsGraphical Models
–– Nodes: random variablesNodes: random variables

–– Edges: encodes conditional independentEdges: encodes conditional independent
statementsstatements

earthquake burglar

alarm

( | )

( | )

( )

( )

P a e

P a b

P e

P b
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Graphical ModelsGraphical Models

Different graphical modelsDifferent graphical models
–– Directed: Bayesian networksDirected: Bayesian networks

–– Undirected: Markov random fieldsUndirected: Markov random fields

–– Mixture of the twoMixture of the two

Next workNext work
–– Dynamic Bayesian networks (Dynamic Bayesian networks (DBNsDBNs))

–– Conditional random fields (Conditional random fields (CRFsCRFs))
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DBNsDBNs
Dynamics Bayesian networksDynamics Bayesian networks
–– Directed graphical modelDirected graphical model

–– Prologue/chunk/epiloguePrologue/chunk/epilogue

–– Unroll to fit seriesUnroll to fit series

–– HMM is a DBNHMM is a DBN

prologue epiloguechunk
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Our DBN ModelsOur DBN Models

RecallRecall
–– HMM CI statements too strongHMM CI statements too strong

–– Idea: add dependencies in gene sequencesIdea: add dependencies in gene sequences

–– 8 hidden states8 hidden states
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TrainingTraining

Standard EM learningStandard EM learning

island

state

gene
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DecodingDecoding

Junction tree algorithmJunction tree algorithm
–– Form junction tree from the graphForm junction tree from the graph

–– Message passing along the treeMessage passing along the tree

–– ViterbiViterbi assumption assumption
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ROC CurvesROC Curves

Receiver operating characteristic curvesReceiver operating characteristic curves
–– Free parameter to tune between precisionFree parameter to tune between precision

and recalland recall
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DBN ResultsDBN Results
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DBN ConclusionsDBN Conclusions

ConclusionsConclusions
–– Adding links between gene observationsAdding links between gene observations

helps a lothelps a lot

–– Equal error ratesEqual error rates

42.3%42.3%22.4%22.4%trigramtrigram

34.3%34.3%25.5%25.5%bigrambigram

--38.8%38.8%baselinebaseline

relrel. imp.. imp.EEREERmodelmodel
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Conditional random field for labeling sequenceConditional random field for labeling sequence
–– An undirected acyclic graphAn undirected acyclic graph

–– Random fieldRandom field

–– Definition: for X is a random variable over observationDefinition: for X is a random variable over observation
sequence  and Y is a random variable over statesequence  and Y is a random variable over state
sequence.sequence.

(X,Y) forms a conditional random field

Laffetry et.al 2001
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Conditional random field (CRF) exampleConditional random field (CRF) example

–– Comparison between CRF and HMMComparison between CRF and HMM

HMM CRF

Laffetry et.al 2001
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Probabilistic Models of CRFProbabilistic Models of CRF
–– Local features of CRF is specified by a vector Local features of CRF is specified by a vector ff including including

state feature

transition feature

Global feature F(y,x)

Conditional probability distribution defined by the CRF
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Decoding by CRFDecoding by CRF

Training of CRFTraining of CRF
–– Generalized iterative scalingGeneralized iterative scaling

Fei Sha et.al 2003

The algorithm is also Viterbi
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In the projectIn the project
–– Training dataTraining data

Long sequence was truncated every 100 bits to getLong sequence was truncated every 100 bits to get
non-non-CpGCpG island or  island or CpGCpG island sub-sequences labeled island sub-sequences labeled
with 1 (non-with 1 (non-CpGCpG island) and 2 ( island) and 2 (CpGCpG island) island)
respectively.respectively.

–– Testing dataTesting data
The whole sequence as inputThe whole sequence as input

Truncated sub-sequences as inputTruncated sub-sequences as input
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SoftwareSoftware
–– A CRF toolkit in Java fromA CRF toolkit in Java from

http://crf.sourceforge.nethttp://crf.sourceforge.net by Dr.  by Dr. SunitaSunita
SarawagiSarawagi  in IIT Bombayin IIT Bombay

 Result Result
――  Disappointed, it DID NOT pick up any Disappointed, it DID NOT pick up any CpGCpG island island

 The possible reason The possible reason
–– Truncated strategy does not fit the tool Truncated strategy does not fit the tool
–– Unfamiliar with the source code Unfamiliar with the source code


