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Abstract

CpG islands are short stretches in DNA sequence whose frequency of cytosine(C)and guanine (G) is higher than

background of DNA sequence. They are around the promoter of frequently expressed genes. The conventional way

to recognize CpG islands is to use the hidden Markov models (HMMs). While HMMs are known to suffer from not

being able to capture long dynamic range information, they usually doesn’t provide satisfying results.

In this work, we will try to find CpG islands with improved HMM systems (by means of introducing language

model weights) as well as other family of graphical models: dynamic Bayesian networks (DBNs) [11] and condi-

tional random fields (CRFs) [9]. By using different weights to different kinds of links in an HMM, we can get some

improvements on the recognition. Significant improvements can be achieved by adding dependencies to the obser-

vation variables and thus change the structure of graphical models.. The newly developed gene-trigram model can

reduce the equal error rate by 42.3% relatively to baseline system. Unfortunately, even though CRFs show big benefit

in tasks like text segmentation and part-of-speech tagging, it didn’t recognized any CpG island in our preliminary

experiments.

1 Introduction

CpG island is a short stretch of DNA where the frequency of the occurrence of cytosine (C) and guanine (G) is higher

than the frequency of C and G in other parts of DNA sequence[3]. CpG islands are longer than 200 base pairs (bp) and

have over 50% of G+C content and frequency, at least 0.6 of that statistically expected[7]. The “p” between C and G

only indicates that C and G are connected by phosphodiester bond.

Hidden Markov Model (HMM) is used to model and recognize the CpG island subsequence[5]. An HMM is

shown in Figure 3 where the hidden states form a Markov chain and emit different observations according to some

distribution.

An underlined Markov chain is constructed by eight hidden statesA+, A−, C+, C−, G+, G−, T+, T−. The

transition probability between hidden states and the emission probability between states and observed nucleotides can
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Figure 1: Methylated cytosine

be acquired during training by labeled DNA sequence. The recognition procedure, which is usually called decoding

in the application, is implemented by Viterbi algorithm.

The training is usually carried out with standard expectation-maximization (EM) algorithm and decoding is calcu-

lating the best state sequence by the so-called Viterbi algorithm[8]. One advantage of such HMMs is it is very efficient

to train and inference on them. Despite the fact that only first order Markov chain is used in hidden nodes, they usually

provide good results in practice in domains such as part-of-speech tagging.

However, the conditional independence assumptions made from HMMs are sometimes too strong. For an example,

it states that the genes at different frame in a sequence are independent of each other if the hidden states are known.

Therefore, HMMs cannot capture long dynamic range relations quite well (the so-called duration problem).

One typical solution in speech community is adding language model weights into the system. By doing this, links

with different confidence in prediction will have different weights in inference. Our results show that by adding this

language model weights, we can get some improvement in the CpG island finding.

A more direct way to resolve the strong conditional independence statements is to add links between desired

random variables. This leads us into the dynamic Bayesian networks family[11] where HMM is a special example.

Our results show that by simply adding bigram/trigram links in the gene sequence random variables, we can get a huge

improvement in the CpG island prediction.

We could take this one step further and look models not in the Bayesian network family but other general graphical

models. Conditional random fields (CRFs) [9] have shown great advantages in analyzing sequential data such as name

entity recognition or part-of-speech tagging. We can treat CpG island finding as either a segmentation task or a tagging

task. In our preliminary work, however, CRF didn’t find any CpG island as we expected.

The project report is organized as follows: Section 2 gives the properties of evaluation data corpus with scoring
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Figure 2: Deamination of cytosine

Figure 3: Hidden Markov models

metric. Section 3 provides the details and performance of introducing language model weights into the HMM systems.

Section 4 presents dynamic Bayesian networks and their improvements over HMM baseline systems. Finally, Section 5

shows conditional random fields and details of experiments.

2 Data Corpus and Evaluation Metric

2.1 Data Corpus

We retrieved both gene sequences and CpG island specifications from EMBL-EBI (European Biological Institute).

The one we utilized contains 1710 gene segmentations. 90% of the data is used as training set and the rest 10% is used

as evaluation set. The gene sequences have been segmented by human to indicate some specific functions. Table 1

shows some statistics of our data corpus.

Table 1: CpG island corpus
CpG length DNA length

maximum 2240 185775
minimum 181 44

mean 465 3787

2.2 Provision and Recall

So far, there is no good quantitative metric for measuring the performance of CpG island finding systems. Here in this

project, we propose to use the precision/recall scheme as illustrated in Figure 4.

CSE527-2004-0001 3
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Figure 4: Scoring CpG island finding performance.

In Figure 4, the upper region shows the reference and the lower region shows the testing hypothesis. There is a

CpG island in the gray area (C) and the hypothesis thinks thatA+B is an island. There are two kind of errors, namely

false positive (type II error) and false negatives (type I error). In our experiments, precision and recall are defined as
P

∆=
A

A + B
,

R
∆=

A

C
.

(1)

According to this definition, precision gives among all those retrieved island states, how many are really true and recall

gives among all real island states, how many are correctly retrieved.

Furthermore, theF -measure of a system is defined as the harmonic mean of precision and recall:

F
∆=

PR

P + R
. (2)

2.3 ROC Curve

Most of the time, a information retrieval system has a trade-off between precisions and recall. For an example, we can

classify all states to be an island state so that the recall is 100%, but with a very low precision rate. Receiver Operating

Characteristic (ROC) curve gives the overall performance of those systems. Figure 5 gives two toy ROC curves of two

different system on a same task.
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Figure 5: Examples of ROC curve

In Figure 5, horizontal axis gives 1 minus specificity (precision) and the vertical axis gives sensitivity (recall). In

the toy example we show, the red curve is better than the blue one because when the two system have the same rate of

precision, the red one has higher recall. On the other hand, when the two systems have the same rate of recall, the red

one has better precision.
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In order to calculated a quantitative comparison of two systems, people have introduced the equal error rate (EER).

The EER of ROC is defined when the precision equals recall (P ∗ = R∗):

EER
∆= 1− P ∗ ≡ 1−R∗ (3)

3 Language Modeling in HMM

3.1 Motivations

Hidden Markov Model (HMM) has been commonly used in many areas of pattern recognition. Especially in speech

recognition, it has been proved to be a promising approach. However, there are some drawbacks of using conventional

HMM. State occupancy in HMM decreases exponentially with time:di(t) = at
ii(1− aii) . Therefore, HMM favorites

more insertions and has poor duration modeling ability. On the other hand, the conventional HMM assumes the

observations only depend on the states that generate them. Hence, it is difficult to use the conventional HMM to model

the non-stationary with high correlation between the observations.

In speech recognition, language models have been used to relief these constrains of the HMM and it has been

proved to be a promising method. In this section, we are going to investigate the effect of language model on the task

of CpG island detection.

3.2 Language Models in HMM

We employed the open source software Hidden Markov Model Toolkit (HTK), which is a powerful and famous utility

for speech recognition, to training our HMMs and language model. It has been used to do the decoding as well. The

procedure for training using HTK is as follows:

1. Map the symbols(a, c, g, t) into indices, that were our discrete features.

2. Define the topology for the HMMs. The topologies of the HMMs are as in Figure 6.

Figure 6: State transition topology for HMM

whereN is the HMM for non-island observation sequences andY is for island ones. The HMMs here are all

strictly left-to-right without jumping transitions. This topology is also commonly used in speech recognition.

Since the observations are discrete, the HMMs are discrete HMMs.

3. In our training data, the model alignments are given and only the state sequences are hidden. Thus, Baum-Welch

(Forward-Backward) is performed within the models [14].

CSE527-2004-0001 5



The cost function for decoding with HMM and language models are as follows:

Ŵ = argmax
W

P (W |O)

= argmax
W

P (W )P (O|W )
P (O)

= argmax
W

P (W )P (O|W )

= argmax
W

[log P (W ) + log P (O|W )],

(4)

whereW is the sequence ofN ’s andY ’s, or island and non-land labels.O is a given observation sequence, the

symbols ofa, c, g andt, log P (W ) is the probability for a sequence of class labels, andlog P (O|W ) is the probability

of O given class label sequenceW , which is a probability from the HMMs in our case.

However, due to the nature of Markov and the independence assumptions of HMM,log P (O|W ) is usually under-

estimated. Equivalently speaking, the probability from the language model is over emphasized in the cost function.

A parameter, language model weight (LW ), was introduced to balance the two probability quantities. Thus the cost

function became:

Ŵ = argmax
W

[LW ∗ log P (W ) + log P (O|W )], (5)

whereLW is tunable and usually greater than 1.0 and it is task dependent.

3.3 Experiments

3.3.1 Baseline System

Our baseline system here is a HMM system without language model. No language model means all sequences are

equally likely. The parameter WP is a tunable parameter to trade-off between insertion and deletion.

Figure 7: Baseline decoding diagram

In our experiments the word insertion penalty for our baseline system is 1.0.

3.3.2 Bigram Language Model

The bigram assumption says

P (W ) ≈ P (w1)P (w2|w1) . . . P (wn|wn−1).

CSE527-2004-0001 6



As shown in Figure 8, At each frame, a language model weight is added into the log likelihood for language score. By

doing this, we apply different weights into transition and emission scores.

Figure 8: Decoding diagram with language model

3.3.3 Results

In Table 2 we show the results for applying language model weights in to standard HMMs.

Table 2: Language model results
precision recall F -measure

baseline 29.5% 77.7% 0.214
LM bigram 36.3% 75.0% 0.245

From the Table 2 we see that by applying language model weights into standard HMM, one can get a higher

precision while maintain recall to be roughly the same. Therefore, the overallF -measure is better in LM bigram case.

4 Dynamic Bayesian Networks

In this part of the project, we will look at the disadvantages of HMMs and find better model in the DBN family.

4.1 Motivation

In Section 3, we have tried introducing language model weights into CpG island finding HMM systems. There are

two kinds of links in HMM models, the one for hidden state transitions, and the one for state emissions. These two

kinds of links have different effects on the CpG island prediction. Therefore, the scores come from these two kinds

of links will have different confidence level. For an example, since HMM doesn’t capture good dynamic behavior, we

might trust more on the emission probabilities more than the transition probabilities. The idea of the work in Section 3

is therefore applying different weights on the likelihood scores from different types of links. As we can see from the

results, we do get some improvements with this technique.

There are several issues with this approach. First of all, by replacing the log likelihood∑
i

[log P (wi|wi−1) + log P (oi|wi)]

CSE527-2004-0001 7



by ∑
i

[λLM log P (wi|wi−1) + log P (oi|wi)],

wherewi is the hidden state (island or not) andoi is the gene observation, one has implicitly replaced the well defined

probability distribution

P (W,O) =
∏

i

P (wi|wi−1)P (oi|wi)

by ∏
i

[P (wi|wi−1)]λLM P (oi|wi),

which is no longer a probability distribution. Therefore, even though the motivation is clear, it doesn’t have a consistent

mathematical explanation.

Furthermore, the techniques in Section 3 is still in the HMM family, which still suffers from the strong conditional

independence assumptions. One example,

Ot⊥⊥Ot̂|Wt,

says that the gene sequence is independent of each other give the hidden island state is known. Therefore, given the

hidden states, the dynamic behavior of the gene sequence is entirely ignored. Since we expect the gene sequence

usually has very long dynamic range, this assumption is not appropriate. In order to solve this problem, we propose to

use more general dynamic Bayesian networks as described next.

4.2 Dynamic Bayesian Networks

A graphical model[10, 6] is a graph with special semantics. The nodes of the graph represent random variables and

the edges of the graph encode the factorization of the overall probability.

earthquake burglar

alarm

( | )

( | )

( )

( )

P a e

P a b

P e

P b

Figure 9: A simple graphical model example

Figure 9 gives a simple example. There are three random variables: “earthquake”, “burglar”, and “alarm”. The

graph encodes that both “earthquake” and “burglar” and trigger “alarm”, and “earthquake” is independent of “burglar”.

The right of the figure gives all the necessary parameters to describe this mechanism.

There are several kind of graphical models: directed graphical models, or Bayesian networks where the graphs are

directed acyclic graphs; undirected graphical models, or Markov random fields, are undirected graphs; and the mixture

of these two. In this work, we will focus on a special kind of Bayesian network called dynamic Bayesian networks

(DBNs) [11] and a special kind of Markov random fields called conditional random fields.

When dealing with sequential data, such as speech recognition and gene sequence analysis, we need a mechanism

to extend the idea of Bayesian networks into the whole sequence. Dynamic Bayesian networks (DBNs) [11] shown in

Figure 10 is such an extension.

In our example, each DBN has a prologue, the first frame of the graph, an epilogue, the last frame, and a chunk
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prologue epiloguechunk

Figure 10: Dynamic Bayesian networks framework

which repeats itself to fit the length of the whole sequence. Recall the properties of an HMM, it is a special example

of DBN.

4.3 Different DBNs for CpG Island Finding

As discussed before, the problem of HMM system is the independence assumption of gene sequences when the island

state is known. In order to solve this, one solution can simply be adding dependencies in the gene sequences as shown

in Figure 11.

(a) gene unigram

(b) gene bigram

(c) gene trigram

Figure 11: Different DBNs for CpG island finding

In Figure 11, we propose several DBNs for finding CpG islands. The first model “gene unigram” is the baseline

HMM system. In “gene bigram” and “gene trigram” each gene observation is depended on the one/two genes. By

adding these links, the genes are no longer independent of each other even the hidden island state is known and

therefore capture more dynamic information from the gene sequence than a simple HMM.

4.4 Training and Decoding by GMTK

The training and inference in general graphs are well developed and can be found in most literatures such as[10].

In this work, we employed the graphical models toolkit (GMTK)[1] to evaluate our models. GMTK was developed

CSE527-2004-0001 9



in the Signal Speech and Language Interpretation Lab in the University of Washington. It can handle all kinds of

complicated graphical models.

When training the graphical models, standard expectation-maximization (EM) algorithm[4] is used. At initial

stage, a guess of hidden states is assigned. Then the parameters are trained using this guess. After that, a better hidden

state assignment is given using trained parameters. This procedure is repeated until some criteria for convergence.

4.4.1 Junction Tree Algorithm

The inference of the graph is based on junction tree algorithm[2]. The procedure of Viterbi algorithm can be interpreted

as a message passing along the HMM. This message passing scheme only works on a tree (HMM is a tree). For more

general graphical models, the idea is translate the graphical models into a junction tree where the nodes are a clique of

random variables. Message passing along this junction tree can guarantee the correct inference given some evidence.

The steps of a junction tree algorithm for a Bayesian network is

1. Moralisation: For each node, if the two parents are not connected, connect them with an undirected link. After

that, drop all the arrows of all the links.

2. Triangulation: Add links to the graph so that all cycles with length greater than 3 have at least an arch.

3. Construct a junction tree from the triangulated graph where the nodes of the tree are the cliques of the graph and

separators of the junction tree are the separators of the cliques.

4. Perform message passing: Distribute and collect all evidences on the junction to inference the hidden nodes.

4.5 Evaluations

We applied our models in the same task in Section 3. There are 8 hidden states and 4 observations (A,C,G, T ). Unlike

in Section 3, where feed-forward HMM is used, here an upper triangle hidden state transition probability matrix is

utilized within island or non-island states. Only the last state of island states can transit into the first state of non-island

states and only last state of non-island states can transit into the first state of island states. In other words, the hidden

state transition matrix for 4 states (1-4) in island and 4 states (5-8) in non-island is something like:

p11 p12 p13 p14 0 0 0 0
0 p22 p23 p24 0 0 0 0
0 0 p33 p34 0 0 0 0
0 0 0 p44 p45 0 0 0
0 0 0 0 p55 p56 p57 p58

0 0 0 0 0 p66 p67 p68

0 0 0 0 0 0 p77 p78

p81 0 0 0 0 0 0 p88


This is an extension of the work in Section 3 where it can be shown that the feed-forward HMM is just by setting

p13 = p14 = p24 = p57 = p58 = p68 = 0.

As we will see later, this extension of transition matrix will give better baseline because there is more flexibility in the

model.

CSE527-2004-0001 10



The model was trained by standard EM and converged after 4 iterations. After decoding, the results are shown in

Figure 12.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−specificity

se
ns

ib
ili

ty

gene unigram
gene bigram
gene trigram

Figure 12: ROC of different DBNs for CpG island finding

In Figure 12, the star point is the HMM baseline created by HTK using feed-forward diagram. The square point is

the one with language model weight applied from Section 3. The blue curve is our HMM baseline system. The green

line shows the result for gene-bigram model and the red curve gives the result for gene-trigram model.

First of all, our baseline result is better than Section 3 as they are “under the blue curve”. The reason is that we

used a better hidden state transition diagram. One can clearly see that we get a big improvement by adding just one

link in the gene sequence. Further improvement can be reached by adding a trigram link in the gene sequence.

Table 3: Equal error rate for different DBNs
model EER rel. imp.

unigram 38.8% -
bigram 25.5% 34.3%
trigram 22.4% 42.3%

In Table 3, we show the equal error rates of different DBN models in our experiment. The first row gives unigram

which is our HMM baseline result. The relative improvement over baseline is provide in the last column of the table.

From the table, we can see that by adding one link in the gene observation nodes, the equal error rate can be reduced

by 34.3% relatively. The gene-trigram model can reduce the equal error rate as significant as 42.3%.

4.6 Discussions

We have shown big improvement by changing the structure of DBNs. There are other things we can do. When

specifying a DBN, there are two things need to be clear: the meaning of the nodes, and the representations of the links.

In our work, we have fixed our representation that the observation nodes are just gene sequences,A,C,G, T . Another

possible representation is using features with dynamic information, an idea borrowed from speech recognition (delta’s

and double delta’s). In this case, we can use the feature asC−A+T which means the current gene isA, and it is

preceded byC and followed byT . With this representation, we captured some dynamic information of the sequence

without referring to gene bigram or gene trigram links.

CSE527-2004-0001 11



In our frame work, we fixed the number of hidden states to be 8, the value used in most literatures. We can also

change the number of hidden states to see the effect of this on the performance. On the other hand, the hidden state

transition diagram is also important. We have used upper triangle matrix for transition probability table in our DBN

work. We can also try something like in HTK where feed-forward transition table is used.

5 Conditional Random Fields

5.1 Introduction of conditional random field

In the tasks of labeling a set of sequential observation, HMM is widely used and associated with strong conditional

independent hypothesis which assumes the observations are totally independent. HMM is a form of generative model

by defining a joint probabilityp(X, Y ).It is computationally intractable to enumerate all the possible observation

sequences so that the observations are only determined by the hidden states and independent with each other in HMM.

CRF, on the other hand, chooses the conditional probabilityp(Y |X) instead of joint probabilityp(X, Y ), where

a new observation sequencex is labeled by a state sequencey wheny maximize the conditional probabilityp(y|x).
This property ensures that any attribute of both observation sequences and state sequences can captured by the model.

Furthermore, CRF is an undirected graphic model compared to other directed conditional Markov graphical model,

such as Maximum Entropy Markov models (MEMM), which avoids the label bias problem in those models[9, 12]

Figure 13: Illustration of CRF

5.2 Probabilistic structure of CRF

For X is a random variable over observation sequence andY is a random variable over state sequence.Y = Yv,v∈V ,

indexed by the vertexes ofG(V,E), if p(Yv|X, Yw, w 6= v = p(Yv|X, Yw, w ∈ ne(v)), then(X, Y ) forms a condi-

tional random field.

The graphical structure of CRF is represented by potential functions. Each potential functions operates on a

clique of neighbored vertexes inG(V,E). An isolated potential function itself does not have a direct probabilistic

interpretation but represents constraints on the configurations of defined random variables.

In [9], each potential function is defined as the following

exp

 ∑
e∈Ej

λjtj(e, y|e, x) +
∑

v∈V,k

µksk(v, y|v, x)

 , (6)

wheresk(v, y|v, x) is called state feature, which represents the state atk-th vertex and the entire observation sequence

tj(e, y|e, x) is called transition feature between adjacent states atj-th edge ofG(V,E) and the entire observation

sequence.
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sk(v, y|v, x) andtj(e, y|e, x) are also called local feature functions. A global feature function is defined by the

summation of local feature functions

Fj(y, x) =
∑

j

tj(e, y|e, x) + sj(v, y|v, x). (7)

The probability of a state sequence y given an observation sequence x is written as

p(y|x, λ) =
1

Z(x)
exp

∑
j

λjFj(y, x)

 , (8)

whereZ(x) is a normalization factor.

5.3 Training and Decoding of CRF

With training labeled data{x(k), y(k)} and the probability function as defined in Equation 9, the parameters is derived

by maximum likelihood function.

L(λ) =
∑

k

log
1

Z(x(k))
+

∑
j

λjFj(y(k),x(k))

 (9)

To maximize the likelihood function, the likelihood function is differentiated as

∂L(λ)
∂λj

= Ep̃(Y,X)[Fj(Y, X)]−
∑

k

Ep(Y |x(k),λ[Fj(Y, x(k))],

wherep̃(Y, X) is the empirical distribution of training dataEp[·] and denotes expectation with respect to distribu-

tion p [12]. In practice, the feature in a high dimensional vector space so that it is computationally intensive to tune all

the parameters at the same time. Only one parameter is tuned to find the maxima first with all other parameters fixed,

then the next parameter is tuned as the first one and so on [9, 13], this strategy is called generalized iterative scaling.

After training, the observation sequence will be input into the CRF with tuned parameters. The state sequence y

which can maximize the likelihood function will be assigned. This is shown in the following formula

ŷ = argmax
y

pλ(y|x) = argmax
y

λF (y, x).

The decoding procedure is explained in [9, 13], by Viterbi algorithm.

5.4 Result of experiment

The program we used is the CRF toolkit onhttp://crf.sourceforge.net by Dr. Sunita Sarawagi in IIT

Bombay which is based on [13].

During training in this project, each DNA sequence is truncated every 100 bp or when meeting the nucleotide

belonging to different region (non-CpG island or CpG island). For testing, we inputted truncated DNA subsequence

or the whole DNA sequence. The result is disappointed for none of the CpG island was picked up by the CRF toolkit.

The reason for the result is possibly two fold. One is that we are not quite familiar with the source code of the toolkit

for it is a large program in Java, the other is that the truncating strategy might not fit the toolkit.
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