#### Finding Transcription Modules on Microarray Data Using PISA

Yangqiu Hu 12/15/2004

## Outline

- Limitations of clustering
- Overview of biclustering
- Signature Algorithm (SA) and extensions (ISA, PISA)
- Implementation and results
- Conclusions

## Microarray Data Analysis

- Classical clustering algorithms have been successful
  - Grouping genes of similar expression patterns
  - Global partitioning of the data
  - Generally a starting point in the analyses
  - E.g., hierarchical, *k*-means, SOM, ...

### Limitations of Clustering

- Assigning each gene to a single cluster, while in fact many genes participate in several biological functions
- Measuring correlation over all conditions, but typically genes are only regulated in specific experimental context. Expression levels in uncorrelated conditions are simply *noise* for clustering

## Biclustering

- Clustering both genes and conditions
- Overlapping clusters (vs. *disjoint* clusters)
- Local partitioning (vs. *global* partitioning)
- Other names:
  - Coclustering
  - Bidimensional clustering
  - Subspace clustering
  - Etc.

#### **Transcription Modules**



TM: a set of conditions and a set of genes connected by a transcription factor.

(From: Wingreen et al.)

# Finding Transcription Modules

- Transcription modules are
  - Local structures in microarray data matrix
  - Non-exclusive: they can overlap
  - Non-exhaustive: they do not have to cover all genes/conditions
- Classical clustering methods may have difficulties
- Biclustering methods may be used to find TM's

### **Overview of Biclustering**

- Bicluster: a subset of rows that exhibit similar behavior across a subset of columns, and vice versa
- Biclustering: Given a data matrix, the identification of a set of biclusters that meet some homogeneity criteria
- Connection with weighted bipartite graph
- NP-complete heuristic approaches

## **Bicluster Type**



(a) Constant bicluster; (b) Constant rows; (c) Constant columns; (d) Coherent value (addictive); (e) Coherent value (multiplicative) (f) Overall coherent evolution;
(g) Coherent evolution on rows; (h) Coherent evolution on columns; (i) Coherent evolution on columns (order preserving); (j) Coherent sign changes

(From: Madeira et al.)



(a) Single bicluster; (b) Exclusive row/column; (c) Checkerboard; (d) Exclusive rows; (e) Exclusive columns (f) Non-overlapping with hierarchy; (g) Non-overlapping non-exclusive; (h) Overlapping with hierarchy; (i) Arbitrarily positioned overlapping

# Some Biclustering Methods

- Cheng and Church
  - Coherent value, arbitrary overlapping
  - Greedy optimization of bicluster homogeneity
  - URL: <a href="http://cheng.ececs.uc.edu/biclustering/">http://cheng.ececs.uc.edu/biclustering/</a>
- CTWC (Coupled Two-Way Clustering)
  - Coherent value, arbitrary overlapping
  - Separate row and column clustering
  - URL: <u>http://ctwc.weizmann.ac.il/</u>

# Some Biclustering Methods

- Plaid model
  - Coherent value, arbitrary overlapping
  - Distribution parameter estimation
  - URL: <u>http://www-stat.stanford.edu/~owen/plaid/</u>
- SAMBA
  - Coherent evolution, arbitrary overlapping
  - Bipartite graph
  - URL: <u>http://www.cs.tau.ac.il/~rshamir/samba/</u>

- TM: a set of co-regulated genes and a set of conditions that trigger this co-regulation (Ihmels et al. 2002)
- Input: a set of genes that partially overlap a TM (prior information required)
- Output: a complete TM (gene signature + condition signature)



(From: Ihmels et al.)

 Step 1: select the conditions under which the input genes are most tightly coregulated

- Condition score: 
$$S_c = \left\langle E_G^{gc} \right\rangle_{g \in G_I}$$

– Thresholding:

$$S_{C} = \{ c \in C : \left| s_{c} - \left\langle s_{c} \right\rangle_{c \in C} \right| > t_{C} \sigma_{C} \}$$

 Step 2: select the genes whose expression level change significantly from the whole genome under the conditions selected in step 1

- Gene score: 
$$S_g = \left\langle S_c E_C^{gc} \right\rangle_{c \in S_c}$$

- Thresholding:

$$S_G = \{g \in G : \left| s_g - \left\langle s_g \right\rangle_{g \in G} \right| > t_G \sigma_G \}$$

- Symmetric in genes and conditions
- Uncorrelated genes/conditions will be removed
- Disadvantages:
  - Requires prior knowledge
  - How to choose the threshold values
  - Only two steps: no further iteration

# Iterative Signature Algorithm

- ISA extends SA by
  - Running SA iteratively
  - Starting with random input gene sets
  - Using a range of threshold values
- Advantages of ISA:
  - Requires no prior knowledge
  - Reveals the hierarchical modular organization at different resolutions



(From: Bergman et al.)

## ISA Applied to Yeast Data

- Saccharomyces Cerevisiae microarray data containing 6206 genes and 1011 experimental entries
- Using  $t_G = 1.8, 1.9, ..., 4.0$ , and  $t_C = 2.0$
- Using ~20,000 random input gene sets, each generating a fixed point per t<sub>G</sub>
- Module fusion: agglomerative clustering of the fixed points for each  $t_G$

### **ISA Results**

- 2956 out of 6206 genes are included in at least one module, with a few overlapping
- All experimental conditions are associated with at least one module, with large overlapping
- Module size is between 100~300 genes
- *t<sub>G</sub>* ↑, module size ↓, # of modules ↑
   (higher resolution)

#### **Hierarchical Modular Organization**





(From: Ihmels et al.)

### Limitations of ISA

- Lots of spurious modules
- Weak modules may be *overwhelmed* by strong modules



### Progressive Iterative Signature Algorithm (PISA)

- Removes the contributions of the already found module to the expression data
- Reduces positive feedback due to random input sets
- Improves thresholding on gene scores, no thresholding on condition scores

## **PISA Implementation**

- Normalization of expression data
  - Making gene scores comparable for thresholding (E  $\rightarrow$  E<sub>G</sub> and E<sub>C</sub>)
- PISAstep
  - Modified ISA
- > Orthogonalization:
  - Removing found module
- > Postprocessing:
  - Preliminary modules  $\rightarrow$  consistent modules

# Orthogonalization (1)

 Each condition score vector S<sup>C</sup> is required to be orthogonal to that of the previously found modules



(From: Kloster et al.)

## Orthogonalization (2)

 After finding a module (S<sup>G</sup>, S<sup>C</sup>), remove the component along S<sup>C</sup> for all genes:

$$E_{C}^{new} = E_{C} - E_{C} \frac{S^{C} (S^{C})^{T}}{\left|S^{C}\right|^{2}}$$

# Finding Consistent Modules

- Run PISA many times (~100)
- Tabulate all preliminary modules (fixed points)
- Consistency check:
  - PM has > 50% genes in the CM
  - Genes appear in > 20% of the PMs
  - Iterate ...
- Our approach:
  - Clustering the condition scores of PMs

#### **Results – Simulated Data**



One of the overlapping modules, module #2, is incomplete

#### Results – Yeast Expression Data

- Expression data from Gasch et. al., Genomic expression programs in the response of yeast cells to environmental changes, Mol Biol Cell. 2000 Dec;11(12):4241-57, with 6152 genes and 173 conditions
- For comparison, only use those genes as in Segal et. al. Module Networks: Identifying Regulatory Modules and their Condition Specific Regulators from Gene Expression Data, Nat Genet. 2003 Jun;34(2):166-76, with 2355 genes and 173 conditions
- Segal et. al. identified 50 non-overlapping modules using their PCluster (Probabilistic Agglomerative Clustering)

#### Results – Yeast Expression Data

- We ran PISA 100 times and got 2210 preliminary modules
- Our postprocessing method allows to determine the # of consistent modules
- 30 minutes on PC, Matlab implementation

| # mod. | % genes<br>included | max #<br>overlapping mod. | mean mod. size |
|--------|---------------------|---------------------------|----------------|
| 50     | 78.28%              | 11                        | 99.76          |
| 100    | 89.20%              | 16                        | 91.72          |
| 150    | 94.60%              | 24                        | 95.31          |

### Performance Comparison

• Biological relevance using Gene Ontology

$$p = 1 - \sum_{i=0}^{n-1} \frac{\binom{c}{i} \binom{N_G - c}{m - i}}{\binom{N_G}{m}}$$

- $N_a$  number of genes in organism (2355)
- m number of genes in module
- c number of genes in GO category
- n number of genes in both module and GO category

#### **Performance Comparison**



Only GO categories with no more than 300 genes are used for computing the p-values

#### Conclusions

- Classical clustering methods may encounter difficulties when applied to microarray data with large # of samples
- Would biclustering be a promising solution?
- Judging from the overlap with GO annotations, PISA's results on the yeast expression data are better than those in the original paper

### Future Work

- Determining the optimal # of modules
- Applying PISA to more data sets
- Validation of biclustering methods, using both internal and external data
- Comparing PISA with other biclustering methods

• . .