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Introduction 
 
The technology of DNA microarray has made it possible to study the transcriptional 
response to different experimental conditions on a genome scale.  A large amount of data 
has been accumulated, demanding powerful computational tools to extract the 
information and knowledge from it.  While classical clustering methods (such as 
hierarchical clustering, k-means clustering, and self-organization map (SOM) have been 
successfully applied to finding genes that are co-regulated under a relatively small 
number of specific conditions, they are less effective when applied to large scale data 
mainly due to two limitations [5].  First, these clustering methods usually assign each 
gene to a single class, whereas genes may participate in more than one biological 
function and thus should be included in multiple clusters.  Second, these methods 
measure the correlation in expression patterns over all condition, but genes are typically 
only regulated in specific experimental contexts, and the remaining conditions are simply 
the noise.  Finding transcription modules from large-scale genomic data sets has fallen 
into one of the applications where common clustering methods may encounter inherent 
difficulties. 
 
Many approaches have been devised to address these issues, including biclustering.  
Before this term was first used by Cheng and Church [9] in microarray data analysis, it 
had been studied in other fields under different names such as coclustering, bidimensinal 
clustering, and subspace clustering.  Biclustering performs clustering on the genes and 
conditions simultaneously, which produces a local model as opposed to the global model 
generated by conventional clustering.  Clearly biclustering is suitable for situations when 
(1) only a small set of genes participate in a cellular process; (2) a cellular process is 
active only in a subset of conditions; and (3) some genes may participate in multiple 
pathways that may or may not be activated under all conditions [3].  Therefore, 
biclustering may be a key technique for finding transcription modules. 
 
Among the biclustering algorithms, the Signature Algorithm (SA) [5] and its variants, the 
Iterative Signature Algorithm (ISA) [3,4] and the Progressive Iterative Signature 
Algorithm (PISA) [6] are promising particularly due to their biological nature.  In a 
transcription control network a single transcription factor (TF) typically regulates 
multiple genes, and a transcription module corresponds to a set of such genes and the 
conditions that are connected by the transcription factor.  Thus the SA series algorithms 
are chosen as the main focus of this project, and its most advanced version, PISA, is 
implemented and tested on simulated and real data.  The remainder of the report includes 
a brief overview of biclustering, followed by the details of SA/ISA/PISA and some 
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implementation issues, as well as the experimental results, and conclusions and future 
work. 
 
A brief overview of biclustering 
 
Bicluster is a subset of rows that exhibit similar behavior across a subset of columns, and 
vice versa.  Given a data matrix, biclustering is the identification of a set of biclusters that 
meet some homogeneity criteria.  See [1,2] for reviews of biclustering algorithms.  The 
data matrix can be regarded as a weighted bipartite graph, where each row corresponds to 
a node ni ∈ L, and each column corresponds to a node nj ∈ R, where L and R are the 
bipartition of the graph.  The only edge between ni and nj has weight aij, the entry of the 
data matrix.  This formulation leads to the proof that finding the bicluster with maximum 
size is NP-complete, which is equivalent to finding the maximum edge biclique in a 
bipartite graph.  For this reason, most biclustering algorithms employ heuristics to avoid 
the exponential time. 
 
Biclusters can be of different types: (1) constant values; (2) constant values on rows or 
columns; (3) coherent values; (4) coherent evolutions.  Biclusters can also have different 
structures: (1) exclusive rows and columns; (2) non-overlapping with checkerboard 
structure; (3) exclusive rows; (4) exclusive columns; (5) non-overlapping with tree 
structure; (6) non-overlapping nonexclusive; (7) overlapping with hierarchy; and (8) 
arbitrarily positioned overlapping. 
 
Depending on the different heuristics approaches, biclustering can be further classified as 
(1) iterative row and column clustering; (2) divide and conquer; (3) greedy iterative 
search; (4) exhaustive enumeration; and (5) distribution parameter identification.  Some 
common biclustering algorithms are publicly available, such as the Cheng and Church 
method [9], the Coupled Two-Way Clustering (CTWC) [10], the Plaid model [11], and 
the SAMBA [12]. 
 
The Signature Algorithm (SA) 
 
The SA was introduced by Ihmels et al in 2002 [5].  Here the notion of a significant 
bicluster (or consistency) is intrinsically defined on the genes and the conditions – the 
conditions uniquely define the genes, and vice versa.  A bicluster is formally defined as a 
module, which includes a set of co-regulated genes and a set of conditions that trigger 
this co-regulation.  The SA receives as input a set of genes that partially overlap a TM, 
and it gives as output a complete set of module with gene signature and condition 
signature.  There are two steps in the SA.  Step 1 selects the conditions under which the 
input genes are most tightly co-regulated, which involves a scoring and a thresholding: 
 
The condition score is computed using CcEs

IGg

gc
Gc ,...,1 , ==

∈
.   

And the thresholding on conditions is { }CCCcccC tssCcS σ>−∈=
∈

: .   
 



 3

Step 2 selects the genes whose expression level change significantly under the conditions 
selected in step 1.  It also includes a scoring and a thresholding: 
 
The gene score is computed using 
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And the thresholding on genes is { }GGGgggG tssGgS σ>−∈=
∈

:  

 
These two steps will largely remove uncorrelated genes and conditions.  However, the 
SA requires prior knowledge to compile the input gene set, and it may be difficult to 
determine the threshold values to use.  In addition, it does no further iteration after the 
two steps.  These drawbacks are overcome by the ISA. 
 
The Iterative Signature Algorithm (ISA) 
 
The ISA improves the SA in the following aspects [3,4]: 
 
(1) Running SA iteratively; 
(2) Starting each run of SA with random input sets; and 
(3) Using a range of threshold values. 
 
By doing these, the application of ISA can be fully automatic and requires no prior 
knowledge.  Using a range of threshold values also provides the possibility of revealing 
the hierarchical modular organization of transcription control at different resolutions. 
 

 
Figure 1.  ISA’s ability to revolve overlapping modules.  From [4]. 
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Figure 1 shows ISA’s ability to resolve overlapping modules when used on simulated 
data.  Ihmels et al also applied ISA to a Saccharomyces Cerevisiae microarray data set 
containing 6206 genes and 1011 experimental entries.  They set tG ranging between 1.8 
and 4.0 at an interval of 0.1, and a fixed tC = 2.0.  They compiled ~20,000 random input 
gene sets, each generating a fixed point for each tG.  Finally a module fusion step is used 
to cluster the fixed points for each tG, resulting in the final modules, as shown in figure 2. 
 

 
 

Figure 2. Hierarchical modular organization found by ISA.  From [3]. 
 
The Progressive Iterative Signature Algorithm (PISA) 
 
Despite its success, ISA still suffers from two major limitations:  First, there are a lot of 
spurious fixed points.  Second, weak modules might be overwhelmed by strong modules.  
To address these problems, Kloster et al developed the PISA [6].  Its central idea is that 
after finding a converged module, its contribution to the condition score should be 
removed before the next iteration.  It is hoped that hidden or weak modules can be 
exposed after the orthogonalization.  PISA also attempts to improve ISA by avoiding 
positive feedback, and enhancing the thresholding schema.  There are four important 
steps in PISA: 
 
1. Normalization 
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It is essential to make the expression data for each gene comparable, so the gene score 
threshold can be applied to all genes on an equal footing.  For this purpose, EG and EC, 
two different copies of the raw expression matrix E, are produced for computing the gene 
and condition scores, respectively 
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2. PISAstep 
PISAstep is a modified ISA.  Compared to ISA, PISAstep only takes threshold on the 
gene scores, and since it uses a robust estimate of the mean and standard deviation, it 
eliminates the use of a range of threshold values.  In addition, leave-one-out scoring is 
used to avoid positive feedback. 
 
3. Orthogonalization 
This is the major advantage of PISA over ISA.  When a new module has been found, its 
contribution to the condition scores is removed by 
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4. Postprocessing 
We use hierarchical clustering of the condition scores of the preliminary modules to 
generate consistent modules.  One advantage of this approach is that we can determine 
the number of consistent modules. 
 
The above algorithm of PISA is implemented in Matlab.   
 
Experimental results 
 
The implemented PISA is first used to process a simulated data set containing 5 
overlapping modules (figure 3).  PISA is able to identify 4 modules correctly, while does 
not find one module completely.  This is probably due to the overlapping of both genes 
and conditions, and the addictive pattern of two linearly varying modules. 
 
The PISA is then applied to the yeast data from Gasch et al [7].  The original data set has 
6152 genes and 173 conditions.  However, to compare the results of PISA with the 50 
clusters defined in Segal et al [8], we only use the 2355 genes that they used.  So the final 
data has 2355 genes and 173 conditions. 
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Figure 3. PISA applied to simulated data 

 
We run the PISA 100 times and get 2210 preliminary modules.  We then choose 50, 100, 
and 150 as the number of final modules, and use hierarchical clustering for the 
preliminary modules.  Table 1 summaries the final results. 
 

Table 1. PISA results 
# modules % genes included max # overlapping mod. mean module size 

50 78.28% 11 99.76 
100 89.20% 16 91.72 
150 94.60% 24 95.31 

 
To compare the results with the modules identified in [8], we compute the p-values for 
each category of the Gene Ontology database (ref.) that maximally overlaps with a 
module. 
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where Ng is the number of genes in organism (2355), m is the number of genes in module, 
c is the number of genes in GO category, and n is the number of genes in both module 
and GO category.  We only compute GO categories with no more than 300 genes. 
 
The results are plotted in figure 4.  It is clear that PISA outperforms the modules found in 
[8], and as the number of modules increases, the biological relevance also increases.  
However, it is not clear how to determine the optimal number of modules. 
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Figure 4. Comparing PISA’s modules with Segal’s modules 

 
Conclusions 
 
In this report I first discussed two limitations of classical clustering methods when 
applied to large scale genomic expression data, and then briefly reviewed biclustering 
that may be an alternative to clustering.  Next I introduced in greater details the Signature 
Algorithm family (SA/ISA/PISA), among which I chose the most advanced version, 
PISA, to implement for the course project.  My implementation was tested using 
simulated data, which partly confirmed its ability to resolve overlapping modules.  Then 
the PISA was applied to the yeast data with 2355 genes and 173 conditions, and the 
results were compared with published results.  Judging from the p-values of overlapping 
with GO annotations, the modules identified by PISA are more biologically relevant. 
 
Future work may include determining the optimal number of modules, applying PISA to 
more data sets, the validation of biclustering methods, using both internal and external 
data, and comparing PISA with other biclustering methods. 
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