
 1

Finding Transcription Modules on Microarray Data
Using PISA

Yangqiu Hu

yqhu@u.washington.edu
CSE 527 Final Project, 12/15/2004

Introduction

The technology of DNA microarray has made it possible to study the transcriptional
response to different experimental conditions on a genome scale. A large amount of data
has been accumulated, demanding powerful computational tools to extract the
information and knowledge from it. While classical clustering methods (such as
hierarchical clustering, k-means clustering, and self-organization map (SOM) have been
successfully applied to finding genes that are co-regulated under a relatively small
number of specific conditions, they are less effective when applied to large scale data
mainly due to two limitations [5]. First, these clustering methods usually assign each
gene to a single class, whereas genes may participate in more than one biological
function and thus should be included in multiple clusters. Second, these methods
measure the correlation in expression patterns over all condition, but genes are typically
only regulated in specific experimental contexts, and the remaining conditions are simply
the noise. Finding transcription modules from large-scale genomic data sets has fallen
into one of the applications where common clustering methods may encounter inherent
difficulties.

Many approaches have been devised to address these issues, including biclustering.
Before this term was first used by Cheng and Church [9] in microarray data analysis, it
had been studied in other fields under different names such as coclustering, bidimensinal
clustering, and subspace clustering. Biclustering performs clustering on the genes and
conditions simultaneously, which produces a local model as opposed to the global model
generated by conventional clustering. Clearly biclustering is suitable for situations when
(1) only a small set of genes participate in a cellular process; (2) a cellular process is
active only in a subset of conditions; and (3) some genes may participate in multiple
pathways that may or may not be activated under all conditions [3]. Therefore,
biclustering may be a key technique for finding transcription modules.

Among the biclustering algorithms, the Signature Algorithm (SA) [5] and its variants, the
Iterative Signature Algorithm (ISA) [3,4] and the Progressive Iterative Signature
Algorithm (PISA) [6] are promising particularly due to their biological nature. In a
transcription control network a single transcription factor (TF) typically regulates
multiple genes, and a transcription module corresponds to a set of such genes and the
conditions that are connected by the transcription factor. Thus the SA series algorithms
are chosen as the main focus of this project, and its most advanced version, PISA, is
implemented and tested on simulated and real data. The remainder of the report includes
a brief overview of biclustering, followed by the details of SA/ISA/PISA and some

 2

implementation issues, as well as the experimental results, and conclusions and future
work.

A brief overview of biclustering

Bicluster is a subset of rows that exhibit similar behavior across a subset of columns, and
vice versa. Given a data matrix, biclustering is the identification of a set of biclusters that
meet some homogeneity criteria. See [1,2] for reviews of biclustering algorithms. The
data matrix can be regarded as a weighted bipartite graph, where each row corresponds to
a node ni ∈ L, and each column corresponds to a node nj ∈ R, where L and R are the
bipartition of the graph. The only edge between ni and nj has weight aij, the entry of the
data matrix. This formulation leads to the proof that finding the bicluster with maximum
size is NP-complete, which is equivalent to finding the maximum edge biclique in a
bipartite graph. For this reason, most biclustering algorithms employ heuristics to avoid
the exponential time.

Biclusters can be of different types: (1) constant values; (2) constant values on rows or
columns; (3) coherent values; (4) coherent evolutions. Biclusters can also have different
structures: (1) exclusive rows and columns; (2) non-overlapping with checkerboard
structure; (3) exclusive rows; (4) exclusive columns; (5) non-overlapping with tree
structure; (6) non-overlapping nonexclusive; (7) overlapping with hierarchy; and (8)
arbitrarily positioned overlapping.

Depending on the different heuristics approaches, biclustering can be further classified as
(1) iterative row and column clustering; (2) divide and conquer; (3) greedy iterative
search; (4) exhaustive enumeration; and (5) distribution parameter identification. Some
common biclustering algorithms are publicly available, such as the Cheng and Church
method [9], the Coupled Two-Way Clustering (CTWC) [10], the Plaid model [11], and
the SAMBA [12].

The Signature Algorithm (SA)

The SA was introduced by Ihmels et al in 2002 [5]. Here the notion of a significant
bicluster (or consistency) is intrinsically defined on the genes and the conditions – the
conditions uniquely define the genes, and vice versa. A bicluster is formally defined as a
module, which includes a set of co-regulated genes and a set of conditions that trigger
this co-regulation. The SA receives as input a set of genes that partially overlap a TM,
and it gives as output a complete set of module with gene signature and condition
signature. There are two steps in the SA. Step 1 selects the conditions under which the
input genes are most tightly co-regulated, which involves a scoring and a thresholding:

The condition score is computed using CcEs

IGg

gc
Gc ,...,1 , ==

∈
.

And the thresholding on conditions is { }CCCcccC tssCcS σ>−∈=
∈

: .

 3

Step 2 selects the genes whose expression level change significantly under the conditions
selected in step 1. It also includes a scoring and a thresholding:

The gene score is computed using

CSc

gc
Ccg Ess

∈
= .

And the thresholding on genes is { }GGGgggG tssGgS σ>−∈=
∈

:

These two steps will largely remove uncorrelated genes and conditions. However, the
SA requires prior knowledge to compile the input gene set, and it may be difficult to
determine the threshold values to use. In addition, it does no further iteration after the
two steps. These drawbacks are overcome by the ISA.

The Iterative Signature Algorithm (ISA)

The ISA improves the SA in the following aspects [3,4]:

(1) Running SA iteratively;
(2) Starting each run of SA with random input sets; and
(3) Using a range of threshold values.

By doing these, the application of ISA can be fully automatic and requires no prior
knowledge. Using a range of threshold values also provides the possibility of revealing
the hierarchical modular organization of transcription control at different resolutions.

Figure 1. ISA’s ability to revolve overlapping modules. From [4].

 4

Figure 1 shows ISA’s ability to resolve overlapping modules when used on simulated
data. Ihmels et al also applied ISA to a Saccharomyces Cerevisiae microarray data set
containing 6206 genes and 1011 experimental entries. They set tG ranging between 1.8
and 4.0 at an interval of 0.1, and a fixed tC = 2.0. They compiled ~20,000 random input
gene sets, each generating a fixed point for each tG. Finally a module fusion step is used
to cluster the fixed points for each tG, resulting in the final modules, as shown in figure 2.

Figure 2. Hierarchical modular organization found by ISA. From [3].

The Progressive Iterative Signature Algorithm (PISA)

Despite its success, ISA still suffers from two major limitations: First, there are a lot of
spurious fixed points. Second, weak modules might be overwhelmed by strong modules.
To address these problems, Kloster et al developed the PISA [6]. Its central idea is that
after finding a converged module, its contribution to the condition score should be
removed before the next iteration. It is hoped that hidden or weak modules can be
exposed after the orthogonalization. PISA also attempts to improve ISA by avoiding
positive feedback, and enhancing the thresholding schema. There are four important
steps in PISA:

1. Normalization

 5

It is essential to make the expression data for each gene comparable, so the gene score
threshold can be applied to all genes on an equal footing. For this purpose, EG and EC,
two different copies of the raw expression matrix E, are produced for computing the gene
and condition scores, respectively

() () ()
'''

gcggcgc EEE −=

() () ()
''''"

gcggcgc EEE −=

() () ()
'

2
'""

cgcgcgcG EEE =

() () ()
'

2
'0, gcgGgcGgcC EEE =

2. PISAstep
PISAstep is a modified ISA. Compared to ISA, PISAstep only takes threshold on the
gene scores, and since it uses a robust estimate of the mean and standard deviation, it
eliminates the use of a range of threshold values. In addition, leave-one-out scoring is
used to avoid positive feedback.

3. Orthogonalization
This is the major advantage of PISA over ISA. When a new module has been found, its
contribution to the condition scores is removed by

()
2C

TCC

CC
new
C

s

ssEEE −=

4. Postprocessing
We use hierarchical clustering of the condition scores of the preliminary modules to
generate consistent modules. One advantage of this approach is that we can determine
the number of consistent modules.

The above algorithm of PISA is implemented in Matlab.

Experimental results

The implemented PISA is first used to process a simulated data set containing 5
overlapping modules (figure 3). PISA is able to identify 4 modules correctly, while does
not find one module completely. This is probably due to the overlapping of both genes
and conditions, and the addictive pattern of two linearly varying modules.

The PISA is then applied to the yeast data from Gasch et al [7]. The original data set has
6152 genes and 173 conditions. However, to compare the results of PISA with the 50
clusters defined in Segal et al [8], we only use the 2355 genes that they used. So the final
data has 2355 genes and 173 conditions.

 6

Figure 3. PISA applied to simulated data

We run the PISA 100 times and get 2210 preliminary modules. We then choose 50, 100,
and 150 as the number of final modules, and use hierarchical clustering for the
preliminary modules. Table 1 summaries the final results.

Table 1. PISA results
modules % genes included max # overlapping mod. mean module size

50 78.28% 11 99.76
100 89.20% 16 91.72
150 94.60% 24 95.31

To compare the results with the modules identified in [8], we compute the p-values for
each category of the Gene Ontology database (ref.) that maximally overlaps with a
module.

∑
−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−=
1

0

1
n

i G

G

m
N

im
cN

i
c

p

where Ng is the number of genes in organism (2355), m is the number of genes in module,
c is the number of genes in GO category, and n is the number of genes in both module
and GO category. We only compute GO categories with no more than 300 genes.

The results are plotted in figure 4. It is clear that PISA outperforms the modules found in
[8], and as the number of modules increases, the biological relevance also increases.
However, it is not clear how to determine the optimal number of modules.

Simulated Data

Conditions

G
en

es

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200
0 1 2 3 4 5 6

0

20

40

60

80

100

120

140

160

180

200

Consistent Modules

Module ID

G
en

es

 7

Figure 4. Comparing PISA’s modules with Segal’s modules

Conclusions

In this report I first discussed two limitations of classical clustering methods when
applied to large scale genomic expression data, and then briefly reviewed biclustering
that may be an alternative to clustering. Next I introduced in greater details the Signature
Algorithm family (SA/ISA/PISA), among which I chose the most advanced version,
PISA, to implement for the course project. My implementation was tested using
simulated data, which partly confirmed its ability to resolve overlapping modules. Then
the PISA was applied to the yeast data with 2355 genes and 173 conditions, and the
results were compared with published results. Judging from the p-values of overlapping
with GO annotations, the modules identified by PISA are more biologically relevant.

Future work may include determining the optimal number of modules, applying PISA to
more data sets, the validation of biclustering methods, using both internal and external
data, and comparing PISA with other biclustering methods.

References

[1] Tanay, A. et al, Biclustering Algorithms: A Survey, Handbook of Bioinformatics,
2004, to appear.

-30 -25 -20 -15 -10 -5
-30

-25

-20

-15

-10

-5

150 Modules

log10(p-value for Segal)

lo
g1

0(
p-

va
lu

e
fo

r P
IS

A)

-30 -25 -20 -15 -10 -5
-30

-25

-20

-15

-10

-5

100 Modules

log10(p-value for Segal)

lo
g1

0(
p-

va
lu

e
fo

r P
IS

A)

-30 -25 -20 -15 -10 -5
-30

-25

-20

-15

-10

-5

50 Modules

log10(p-value for Segal)

lo
g1

0(
p-

va
lu

e
fo

r P
IS

A)

 8

[2] Sara C. Madeira and Arlindo L. Oliveira, Biclustering Algorithms for Biological Data
Analysis: A Survey, IEEE Transaction on Computational Biology and Bioinformatics,
vol.1, no.1, 24-45, 2004
[3] Jan Ihmels, Sven Bergmann and Naama Barkai, Defining transcription modules using
large-scale gene expression data, Bioinformatics 20(13):1993-2003 (2004)
[4] Sven Bergmann, Jan Ihmels and Naama Barkai, Iterative signature algorithm for the
analysis of large-scale gene expression data, Phys. Rev. E 67, 031902 (2003)
[5] Jan Ihmels, Gilgi Friedlander, Sven Bergmann, Ofer Sarig, Yaniv Ziv and Naama
Barkai, Revealing Modular Organization in the Yeast Transcription Network, Nature
Genetics 31/4, 370-377 (2002)
[6] Kloster M, Tang C, Wingreen NS, Finding regulatory modules through large-scale
gene-expression data analysis, Bioinformatics. 2004 Oct 28
[7] Gasch et. al., Genomic expression programs in the response of yeast cells to
environmental changes, Mol Biol Cell. 2000 Dec;11(12):4241-57
[8] Segal et. al. Module Networks: Identifying Regulatory Modules and their Condition
Specific Regulators from Gene Expression Data, Nat Genet. 2003 Jun;34(2):166-76
[9] Cheng and Church Biclustering: http://cheng.ececs.uc.edu/biclustering/
[10] CTWC: http://ctwc.weizmann.ac.il/
[11] Plaid model: http://www-stat.stanford.edu/~owen/plaid/
[12] SAMBA: http://www.cs.tau.ac.il/~rshamir/samba/

