
Creating Artificial Datasets 

Michael Panitz1 and Mathias Ganter2 

 
1 Department of Computer Science and Engineering, University of Washington, Seattle, USA 

2 Department of Genome Sciences, University of Washington, Seattle, USA 
 

Abstract 
DNA sequencing has been a labor-intensive task 

that has benefited greatly from automation, both 
hardware based, and software based.  Our goal is to 
develop a tool which can provide challenging input to 
a software-based sequence assembler, which attempts 
to reassemble the original DNA sequence given a 
collection of fragmented reads (or that sequence).  In 
order to accomplish this, it is necessary to examine the 
DNA sequencing process in detail, and simulate it.   

Introduction   
This class project was motivated by the needs of 

a local company that is active within the 
bioinformatics industry. One of the company's 
products is a DNA sequence assembly program, and 
it would be helpful to have a tool that is able to 
build simulated datasets, to test their assembler. 
During the course of this project, we have been able 
to produce a prototype of this tool, and successfully 
assemble the datasets that it produces, using the 
company's assembler.  This tool currently takes 
chunks of (previously sequenced) DNA as input, 
and produces several files that contain data about a 
collection of "fragments" similar to what one would 
get from sequencing the given DNA in a wet lab.  
These files serve as the input to the assembler, 
which attempts to reassemble these fragments into a 
consecutive whole.   

Our goals are to explore the issues and concepts 
need to construct such a tool, gain an understanding 
of the topics involved, and to produce a prototype 
program that can be expanded into a full version at 
some point in the future.   

Theory 
Shotgun Sequencing Simulation 
                                                 
Contact: mpanitz@cascadia.ctc.edu 
    mganter@u.washington.edu 
 

 Our implementation is based on a variation of 
double-barreled shotgun sequencing. We are not 
trying to reconstruct our source sequence, but 
rather, we are trying to create a set of ‘mate pair 
reads’ given a starting source sequence.  
 In the lab, the sequencing process is done in a 
series of steps, which we attempt to simulate (as 
needed) in our software tool.  In the lab, the 
unknown “initial” sequence is broken random sized 
subsequences using a physical process (using 
sonication, or a shearing force).  Only subsequences 
close to a specified length are then filtered out, 
using a chromatogram.  These subsequences are 
then inserted into one of several cloning vectors, 
where they are cloned up to levels that are 
conducive to sequencing.  These subsequences, 
referred to as “fragments” in our program, are also 
known as inserts, clones, or templates.  This is 
illustrated in Figure 1. 

Figure 1: Sequence and sequence fragments 
The dark black line is the initial sequence; the light gray 

lines are the inserts. 
 
 We simulate the creation of these inserts by 
taking our known, initial sequence, and selecting 
subsequences whose starting position is chosen 
with uniform randomness.  The length is also 
determined randomly, but is chosen from a normal 
distribution whose standard deviation is set by the 
user.  Each end of the insert is then read (using the 
well-known Sanger method) producing two 
“reads”.  Given that the relative position of these 
two reads are known (within some tolerance), these 
are usually referred to as “mate pair reads”.  
Typically, an insert will be about 6,000 bases long, 
and each of the two reads will be between 750 and 
1,000 bases long. 
 This process creates a set of reads F from our 
sequence A: 
 



F = {f1, f2, …, fn} 
 
 Essential characteristics of the produced data are 
a complete coverage of the source sequence (which 
is usually never achieved in real experiments), same 
sized fragments, introduction of errors and both 
strands are taken into account.  Note that in an 
attempt to assure sufficient coverage, it is typical to 
aim for an average coverage of 10-20 times. 
 In the lab, this set of reads is then analyzed using 
an assembler program, which does the work of 
reassembling as much of the initial sequence as 
possible. 
 
Sequence Assembly Problem 
 The assembly problem is now, how to transform 
the collection of reads over the given nucleotide 
alphabet into a single reconstructed sequence.   This 
is complicated by mutations amplified by the 
cloning process, and/or base calling errors from the 
actual sequencing.  Because there are many such 
solutions and we only want to gain one solution per 
run, our problem can be considered as a Shortest 
Common Superstring Problem of the reads with a 
specified error rate. 
 This problem consists of three stages: 
 

1. an overlap phase (every read is compared 
with every other read, and the overlap 
graph is computed) 

2. a layout phase (positions every read in the 
assembly) 

3. a consensus phase (a multi-alignment of all 
the placed reads is produced to obtain the 
final sequence) 

 
 Note that it may not be possible (given the data) 
to assemble a single sequence that spans the entire, 
initial sequence.  It is common for assembly 
programs to instead assemble subsequences called 
contigs.  Within each contig, the assembler is 
reasonably sure of the sequence of bases, but may 
not be able to position the contig relative to the start 
of the initial sequence. 
 To solve the sequence assembly problem, we use 
the tool rPhrap. On the one hand, rPhrap is very 
similar to the operation of Phrap that is a program 
for assembling shotgun DNA sequence data that 
was developed by Phil Green (University of 
Washington, Department of Genome Sciences). On 
the other hand, rPhrap has been further developed 
by the company. 
 
The Quality Function 
 Most assembler (including both Phrap and 
rPhrap) require that each base within a read be 

assigned a quality score in order to successfully 
reassemble consensus contigs.  The score is based 
on the probability of miscalling the specified base. 
There is strong evidence of a connection between 
the sequence position, and the likelihood of 
miscalling the base. For example, the start and end 
regions have a greater chance to be misread than 
parts in the middle. Figure 2 illustrates a fairly 
typical graph of position number (on the x-axis) vs. 
quality score.  Several more reads are given in 
Appendix A 

 
Figure 2: Position in Sequence vs. Quality Score 

 
 

Figure 3: Our Quality Function 
 
 In order to simulate this, we needed to come up 
with a ‘quality function’ produce reasonable 
looking values.  We came up with a cosine function 
as an approximate model of quality scores given the 
data we looked at, which is illustrated in Figure 3. 



 The quality function assigns to each sequence 
position of each fragment a quality score. Based on 
this score, the sequence assembler decides on which 
nucleotide to choose. The details of our quality 
function are as follows: 
 
 

  cos( )score A w x q z= ⋅ ⋅ + +  
 
where x is the position in the sequence. The 
function always ranges from the first residue to the 
last residue of each sequence segment. The dilation 
in y direction is always set to a constant value for 
all segments, this is achieved by choosing a 
constant value for A. 
 We chose this function after doing some basic 
data analysis: we scatter-plotted position number 
vs. quality score for several individual reads, noting 
their regular structure.  When we attempted to 
scatter plot numerous different reads onto the same 
graph, we noted that while individual reads had a 
regular structure, there was too much variance 
(especially in the ‘middle’ region of the read) to do 
a regression.  Lacking further data analysis skills, 
we decided that the cosine function would offer a 
sufficiently close approximation for our 
purposes.   Instead of taking this cosine 
quality function directly into account, 
we decided to add noise to gain more 
random data while trying to keep the 
original plot structure. This effect is 
also achieved by a cosine function that 
fluctuates very strongly between two 
small boundaries.  
 We decided on the boundaries after 
making several test runs on various 
parameters. There is no difference 
between having a positive, a negative or 
a positive and negative ‘bonus function’ 
as long as the function is symmetrical 
and keeps its strong fluctuation. 

The Implementation 
 The implementation is written in Java 
aiming to implement a user-friendly, i.e. 
readable, code consisting of various 
classes. Their names refer to their 
purpose. It is worth mentioning that we 
started work on our program from scratch and built 
it all on that.   We used BioJava which is an open 
source project that started in 1998 at EBI/Sanger 
providing us with a library like framework for 
processing biological data.  The fundamental 
structure of the tool is fairly simple, and is pictured 

in Figure 4.  The tool reads a given sequence from 
disk using the FASTA file parser provided by the 
BioJava library.  BioJava also provides parsers for a 
wide range of other file formats, thus allowing us to 
import data from many different sources.  Though 
not currently implemented, a repetitive element 
inserter would be useful in order to better simulate 
DNA that contains substantial numbers of repeated 
regions.  The 'Collector' functionality first generates 
the set of all inserts, ensuring that the minimum 
average coverage requirement is met.  It then uses 
the Read Simulator module to actually do the 
individual reads, which generates a set of Mate Pair 
Reads, and a set of corresponding quality scores.  
While not currently enabled, the Mutator module 
would take each read, and randomly mutate bases 
within it, thus simulating the occasional mutations 
that occur when cloning the inserts in the lab.  It is 
also noteworthy to observe that quality scores, 
which reflect the certainty of correctly reading a 
base, are separate from mutations, which are a 
result of flaws in the underlying cloning process.  
Thus it makes sense to separate out the generation 
of quality scores from the generation of mutations. 
 

Figure 4: Overview Flowchart of Program 
 
 The 'Collector' module then writes two files out 
to disk: one that contains the reads themselves, and 
another that contains the quality scores.  It would be 
fairly simple to write additional routines to generate 
output in other formats, as well. 



 While this architecture provides a clean, cohesive 
model to build further features of the tool around, it 
may require revision in order to scale (see Areas 
for Future Work).   However, the tool should be 
easily able to accommodate new features, such as 
the ability to generate entirely synthetic sequences.  
I.e., instead of starting with known, previously 
sequenced DNA, generating the DNA from scratch, 
which would allow the authors of an assembler to 
pick and choose which features they wanted to see 
in the target DNA. 

Discussion 
 We performed several runs using the human beta 
globin region on chromosome 11 (gi-no 455025) 
and the zebrafish DNA sequence from clone XX-
187G17 in linkage group 3 (gi-no 24395450).  Each 
run consisted of using our Java tool to produce a 
file of reads, which was then used by the rPhrap 
tool to produce a collection of one or more contigs. 
We then used a normal dotplot viewer 
(http://arbl.cvmbs.colostate.edu/molkit/dnadot/) and 
the alignment tool CLUSTAL-W to determine the 
position of each contig within the initial sequence.   
 One of the more interesting results that was 
observed within the zebrafish sequence was that 
some of the contigs matched the original sequence 
almost 100% (see Figure 5), whereas other contigs 
matched closely, but with some significant 
differences (see Figure 6).  This is particular 
interesting because the Java tool that we developed 
does not mutate the reads in any way, and 
furthermore, we assign quality scores in a fairly  

Figure 5:  A Nearly Perfect Match Between 
Contig and Initial Sequence 

uniform fashion.  This would seem to imply that in 
the second case, the assembler itself is able to 
assemble a reasonable-looking contig from the 
reads that does not exactly match the initial 
sequence.  In particular, the assembler must be 
getting many regions of the contig correct (thus 
accounting for the line that's visible in Figure 6), 
but mixing up the regions in between (thus 
accounting for the gaps in that line, in the same 
figure).  One possible explanation (or at least a 
contributing factor) is that while our tool doesn't 
mutate the initial sequence in any way, assemblers 
normally expect to see some mutation, and thus 
must look for less than exact matches between two 
reads (or subsection of reads). Thus, the assembler 
may incorrectly 'link' together two reads, ignoring 
minor inconsistencies between the reads as being 
mutations, or other forms of noise. 
 

Figure 6: A Less Perfect Match Between A 
Contig And Initial Sequence 

 
Analyzing methods 
 We want to start with a brief review about the up 
to date evaluation, followed by various possibilities 
for future evaluations. We performed the most basic 
sequence analyzing task, i.e. a dot plot.  
Now let’s consider reasons for choosing the dot plot 
evaluation method that developed in the early 
1980s. A dot plot represents a similarity matrix and 
it is a visual representation between two sequences. 
Each axis of a rectangular array represents one of 
the two sequences to be compared. It is useful for 
searching out regions of similarity in two sequences 
and repeats within a single sequence.  



The principle used to generate dot plots is 
straightforward. A matrix comparison of two 
sequences (or one with itself) is prepared by 
"sliding" a window of user-defined size (called 
window size) along both sequences. If the two 
sequences within that window match with a 
precision set by the mismatch limit, a dot is placed 
in the middle of the window signifying a match. 
Thus, when two sequences share similarity over 
their entire length a diagonal line will extend from 
one corner of the dot plot to the diagonally opposite 
corner. If two sequences only share patches of 
similarity this will be revealed by diagonal 
stretches.  
 Variations in both the size of the sliding window 
and the stringenthy factor can be used to separate 
more significant data from less important data. 
 But, if you want to use a more accurate 
examination method, one should also take a simple 
model, like a scoring model, into account to decide 
on the goodness. There are 3 key issues: 
 
• What kind of algorithms to use to find an 

alignment (Needleman-Wunsch, Smith-
Waterman, FSA-model, HMM, multiple 
sequence alignments) 

• What kind of scoring systems to use to rank 
alignments 

• What kind of statistical methods to use to 
evaluate the significance of an alignment score 

 
 A different approach we though of is using 
phylogenetic analyzing methods to explore the 
relationship between various generated sequences 
and the initial one. 
 This can be done because we used one initial 
sequence and built all the other sequences out of 
this one. One could say that they all diverged from 
one common ancestor by a simulated process of 
mutation and selection. This can be interpreted as 
the relative likelihood that the sequences are 
related, compared to being unrelated.  

Conclusion 
 At this point, the prototype is mostly complete, in 
that the initial feature set is implemented, and we 
have successfully assembled the resulting dataset 
using the rPhrap assembler.  Even at this stage it is 
clear that the tool is producing interesting sets of 

reads, as evidenced by the imperfect contigs, and 
the multiple contigs that the assembler produced (if 
the reads were trivial to reassemble, one would 
expect to see a single, (almost) perfect contig result 
from the assembler. 

Areas for future work 
 The work that has been done so far on quality 
scores has been done using a reasonable number of 
reads (~3,600), but all the reads were obtained from 
a single sequence.  It would be good to verify that 
the underlying physical processes will produce 
similar results with different sequences, and/or 
examine data from other sequencing runs to 
confirm this assumption. 
 It may be beneficial to better analyze the data for 
quality scores.  For example, there is clearly a low-
quality ‘tail’ present in nearly every read (of 
sufficient length) that was examined by the authors, 
but the program currently doesn’t model that.  
Further, there appears to be strong evidence that the 
quality scores have both a regular overall structure, 
and substantial variation within certain ranges of 
base positions. 
 Generating data sets completely from scratch may 
be a useful feature as well, and one that will require 
substantially more research in order to successfully 
attempt.  However, these ‘synthetic’ data sets could 
both save space, and better control the input to an 
assembler, thus allowing one to focus one’s 
attention on a particular issue. 
 One aspect of synthesizing such data would be to 
allow the insertion of repetitive elements 
immediately after generating the ‘raw’ sequence.  
Further, this technique could be used with sequence 
that has been obtained from a database, so as to 
better simulate data that assemblers often encounter 
in the real world.  For example, the program could 
read in a provided sequence, insert various 
repetitive sequences randomly throughout the 
original, and then use that to generate the reads. 
 On the software engineering side, ‘pipelining’ the 
read generating process would be beneficial, as the 
program currently stores all the fragments (and 
reads) in memory simultaneously.  While modern 
machines are able to perform reasonably well, even 
for fairly long input sequences (50Kbp -100Kbp), 
the memory limitations of both the Java Virtual 
Machine and the underlying physical machine 
impose upper limits on the number of reads that can 
be generated.  One author believes that it is 
reasonable to read the entire sequence into memory 
(that author’s guess is that BioJava will require 
about 4 bytes per base, plus constant overhead for 



each read, and so require ~4MB for roughly 1 
million bases), but that the overhead of keeping tens 
of thousands of fragments and reads in memory will 
tax a typical machine excessively.  Instead, a 
‘pipeline’ design could be used, whereby a single 
fragment is generated, then mutated, then the 
reading process is simulated, then the reads are 
written out to a file, and it’s memory released.  This 
would remove any upper bounds on the total 
number of reads that can be generated, and thus 
allow the program to generate substantially larger 
data sets. 
 An additional feature that would be useful is a 
tool that could extract information about the precise 
location of each contig, and the composition of each 
contig in terms of which reads were used to 
generate the contig.  Even if it's only possible to get 
the location of read's contribution relative to the 
start of the contig, it would be an intuitively clear 
metric with which to evaluate the efficacy of the 
assembler, and would lend itself to statistical 
analysis of a more detailed nature. 
 Another useful feature is one that will mutate the 
bases prior to writing the fragment/read out to a 
file.  There is actually code partially written to do 
position-dependent mutation (whereby substitution, 
insertion, and deletion events can be assigned 
probabilities of happening based on their position 
relative to the start of the read), but the authors 
were unable to find precise, accurate numbers to fill 
to use for these events, and so disabled the code.  It 
appears that there may be paper(s) available that 
have studied this topic, and so with a further review 
of the literature, it should be possible to enable this 
feature.  Alternately, it may be possible to use a 
third-party, external application, such as the mutate 
program included in the EMBOSS collection of 
tools, to do the mutations for us.   

Acknowledgments 
 The authors would like to gratefully acknowledge 
the help and direction provided by Christie 
Robertson, who not only furnished the original idea 
for the project, but helped find resources and 
materials, including access to a working rPhrap 
program, during the project. 

References 
Serafim Batzoglou, David B. Jaffe, Ken Stanley, Jonathan 
Butler, Sante Gnerre, Evan Mauceli, Bonnie Berger, Jill P. 
Mesirov, and Eric S. Lander: ARACHNE: A Whole-Genome 
Shotgun Assembler; Genome Research Vol. 12, Issue 1, 177-
189, January 2002 

 
Michael L. Engle and Christian Burks: Artificially generated 
data sets for testing dna sequence assembly algorithms. 
Genomics, 16:286-288, 1993. 
 
Michael L. Engle, Christian Burks: GenFrag 2.1: new features 
for more robust fragment assembly benchmarks. Computer 
Applications in the Biosciences 10(5): 567-568 (1994). 
 
Seto D, Koop BF, Hood L: An experimentally derived data set 
constructed for testing large-scale DNA sequence assembly 
algorithms. Genomics. 1993 Mar;15(3):673-6. Related Articles, 
Links   
 
Gene Myers: Whole-Genome DNA Sequencing, Computing in 
Science and Engineering, 33-43, May–June, 1999. 
 
Eugene W. (Gene) Myers et al.: A Whole-Genome Assembly 
of Drosophila, Science, 287:2196-2204, 24 March 2000. 
 
Soderlund, C., Humphray, S., Dunham, A., and French, L. 
2000. Contigs built with fingerprints, markers, and FPC V4.7. 
Genome Res. 10: 1772–1787. 
 
 
http://genetics.mgh.harvard.edu/goodman/doc/phrap.html  
http://www.biojava.org 
http://www.geospiza.com/rphrap/rPhrapInDoc0.html 
http://www.phrab.org 
 



Appendix A 
 These are several more graphs depicting the 
relationship between position of the base (on the x-
axis), and the quality score (on the y axis). 


