Software Prediction of the Effects of Single Nucleotide Polymorphisms

Angela Collie CSE 527 December 13, 2004

Objective

Examine the ability of two web-based programs to predict the effect of a single nucleotide polymorphism on a protein.

Single Nucleotide Polymorphisms (SNPs)

- 99.9% of the 3.2 billion base pairs in the human genome are the same.
- SNPs are single base pair changes and account for much of the variation.
 - Minor allele is defined as present in >1% of the population.
 - "Common" alleles are present in >10% of the population.
 - There are approximately 11 million SNPs in the genome, corresponding to 1 base pair change every 300 bases.
- Haplotype

AsnGInLeuCys

- nsSNPs are SNPs that are present in the coding region of a gene and result in an amino acid change in the resulting protein.
 - This can affect the 3D structure or interactions with other proteins.
- SNPs in the promoter and exons of a gene are thought to be the most harmful to a protein.

TNF gene: dbSNP provides similar pictorial representation of SNPs

- Public database maintained by the NCBI.
- Must recent build had over 10 million SNPs. 5 million have been validated.
- Data is linked to gene and other NCBI databases, including 3D structure representations for some SNPs.

Polymorphism Phenotyping (PolyPhen)

- Web-based tool for predicting the effect of a nsSNP on a protein.
- Utilizes a combination of 3D structural parameters and sequence homology to make prediction based on rules.
- Input is protein sequence (or ID #) and position of amino acid substitution and amino acid variants.
- Returns predictions of "probably damaging," possibly damaging," "benign," and "unknown."

http://www.bork.embl-heidelberg.de/PolyPhen/

PolyPhen Algorithm: Step 1

- Characterization of substitution site.
- Checks protein database for protein features.
- Uses several program add-ins to identify transmembrane, coil and signal peptide regions.
- If substitution is in a transmembrane region, a score is calculated to determine effect.

http://www.bork.embl-heidelberg.de/PolyPhen/

PolyPhen Algorithm: Step 2

- PolyPhen uses BLAST against a protein database to identify sequences with 30-94% homology to input sequence.
- Position-Specific Independent Counts (PSIC) is run. This returns a score that is based on the log likelihood ratio of the amino acid a occurring at position i compared to the background frequency of amino acid a.
- Ratio is corrected to account for the limited number of sequences available and the interdependence of sequences.

http://www.bork.embl-heidelberg.de/PolyPhen/

PolyPhen Algorithm: Step 3

- PolyPhen BLASTs the sequence against the user-chosen PDB or PQS databases to find proteins of sequence identity of at least 50%.
- Several structural parameters are then calculated using a protein database and another add-in.
- Polyphen then checks contacts of the variant amino acid with ligands, interactions between parts of the protein, and critical residues.

http://www.bork.embl-heidelberg.de/PolyPhen/

PolyPhen Algorithm: Rules

Rules (connected w	Prediction		
PSIC score difference	Substitution site properties	Substitution type properties	
Arbitrary	functional ^a or bond formation ^b site	Arbitrary	Probably damaging
Not considered	In a region annotated or predicted as transmembrane	PHAT matrix difference resulting from substitution is negative	Possibly damaging
Less than 0.5	Arbitrary	Arbitrary	Benign
Greater than 1.0	Atoms are closer than 3.0 Å to atoms of a ligand or residue annotated as BINDING, ACT_SITE, LIPID, METAL	Arbitrary	Probably damaging
Between 0.5 and 1.5	Normed accessibility ACC 15%	accessible surface propensity is 0.75 or absolute change of side chain volume is 60 Absolute change of	Possibly damaging
Between 0.5 and 1.5 Between 1.5 and	Normed accessibility ACC 5%	accessible surface propensity is 1.0 or absolute change of side chain volume is 80	Probably damaging
2.0	Arbitrary	Arbitrary	Possibly damaging
Greater than 2.0	Arbitrary	Arbitrary	Probably damaging

Table legend: One row corresponds to one rule, which may consist of several parts connected by logical AND. If no evidence for a damaging effect is seen, substitution is considered benign.

http://www.bork.embl-heidelberg.de/PolyPhen/

Sample PolyPhen Output

Query: TNF P84L

Sorting Intolerant From Tolerant (SIFT)

- Web-based tool for predicting the effect of a nsSNP on a protein.
- Utilizes sequence homology to predict effect.
- Aligned protein sequences are from BLink.
- Input is GI# (unique for protein) or protein sequence. SNP amino acid substitutions and position can also be submitted.
- Returns predictions of "affect protein function" and "tolerated" for each SNP. Also returns normalized score and median sequence information.

SIFT Algorithm

$$\mathbf{p}_{ca} = \frac{\mathbf{N}_c}{(\mathbf{N}_c + \mathbf{B}_c)}^* \mathbf{g}_{ca} + \frac{\mathbf{B}_c}{(\mathbf{N}_c + \mathbf{B}_c)}^* \mathbf{f}_{ca}$$

- "p_{ca}, the probability of amino acid a at position c, is a weighted average of the observed amino acid frequencies in the alignment and the estimated unobserved frequencies."
 - N_c is the number of sequences at position *c*.
 - B_c is an exponential function that returns the number of pseudocounts based on amino acid frequencies in a predetermined matrix.
 - g_{ca} is a sequence weighted frequency that a appears at c in the alignment.
 - f_{ca} is a frequency of pseudocounts.
- Normalization.

Sample SIFT Output

- Threshold for tolerance is 0.5.
- For position 1M
 - Predict not tolerated:ywvtsrqpnlkihgfedca
 - Predict tolerated: M
 - Normalized probabilities for each amino acid can also be obtained
- For substitution: A94T
 - Substitution at pos 94 from A to T is predicted to AFFECT PROTEIN FUNCTION with a score of 0.02.
 - Median sequence conservation: 2.64
 - Sequences represented at this position:48

Genes of Interest

http://www.biocarta.com/pathfiles/h_il1rPathway.asp

PolyPhen AND SIFT Results

Gene	Reference aa residue /	PolyPhen prediction	SIFT prediction
II 1R1	Ala [A]/Gly [G]	Benjan	Tolerated
		Domgin	
IRAK1	Ser [S]/Leu [L]	Possibly damaging	Tolerated
	Arg [R]/Gly [G]	Possibly damaging	Affect Protein Function
	Cys [C]/Ser [S]	Probably damaging	Tolerated
	Phe [F]/Ser [S]	Benign	Affect Protein Function
	Arg [R]/His [H]	Benign	Tolerated
	Thr[T]/lle [l]	Benign	Tolerated
IRAK4	Ser [S]/Arg [R]	Benign	Affect Protein Function
	His [H]/Arg [R]	Benign	Tolerated
	Ala [A]/Thr [T]	Benign	Tolerated
TNF	His[H]/Asn [N]	Benign	Tolerated
	Pro [P]/Leu [L]	Possibly damaging	Tolerated
	Ala [A]/Thr [T]	Benign	Affect Protein Function
	lle [l]/Asn [N]	Probably damaging	Affect Protein Function
IL6	Pro [P]/Ser [S]	Benign	Tolerated
	Leu [L]/Pro [P]	Probably damaging	Affect Protein Function
	Asp [D]/Val [V]	Benign	Tolerated
	Asp [D]/Glu [E]	Benign	Tolerated

IRAK4 is recently described so there may not have been enough sequences for prediction.

Software Comparison

- 18 SNPs were examined in 5 genes.
- PolyPhen and SIFT have different predictions for several SNPs.
- None of these SNPs have been described in OMIM or in the literature.

Conclusion

- Two web-based software programs were used to predict the effect of 18 SNPs on 5 genes in the IL-1B signaling pathway.
- Software predictions must be verified with experimental data.
- Predictions will improve with additional homologous sequences and threedimensional structure.