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Abstract

We apply Gaussian mixture models to the problem of classifying three-dimensional
protein domain structure predictions generated with the Rosetta structure prediction
method. A standard log-likelihood ratio test distinguishes good predictions from lower
quality ones with 83% accuracy. Good separation between higher and lower scores also
suggests that the best predictions can be identified with a high degree of confidence.
The results are significant for inferring protein function from de novo protein domain
structure predictions.



1 Background

The number of gene sequences in databases is growing rapidly. Proportionately, the number
of sequences whose function is unknown is also increasing. Accurate estimation of protein
function is key to understanding and designing cellular processes. In many cases the newly
determined sequences do not exhibit sufficient homology to known sequences, thus methods
like Pfam produce poor protein function estimates. Structures, on the other hand, are
conserved across greater evolutionary distances than sequences. Thus, methods that infer
the function of new sequences from their three-dimensional structure similarity to known
domains are a powerful alternative to sequence-based methods.

Rosetta is the most successful de novo protein structure prediction methods available
today [1, 2]. It generates several thousand candidate structures from each sequence by ap-
plying a Monte Carlo search to the set of conformations that can be built from smaller,
local structures derived from sequence segments [3, 4]. Two optimization paths find com-
patible combinations of local and global structures, and the resulting candidate predictions
are stable in the sense that they have low free energy both locally and globally.

A strategy is needed to infer the function of the structural predictions produced by
Rosetta. Following the approach in [1], for each three-dimensional structure, the best match
in the Protein Data Bank (PDB) is found using MaxSub [5], a sequence-independent struc-
tural alignment procedure. Our work uses Gaussian mixture models (GMMs) to estimate
the likelihood that a prediction and its PDB match are functionally similar. Based on our
estimated likelihood, we classify the structural predictions as an accurate functional match
or not, resulting in a functional prediction for the sequence.

Protein domains are commonly assumed to be functionally similar if they are in the same
SCOP superfamily [6, 7, 8]. Since there is no structural and functional ground truth for
newly discovered sequences, we adopt the strategy in prior work [1] and use test sequences
from the PDB with known function that can be used as ground truth to determine prediction
success. Figure 1 shows a diagram of our approach. We hypothesize that an approach that
performs well on known sequences will generalize to the prediction of sequences of unknown
function.

Rosetta PDB search GMMs
Sequence Prediction Match Score

Figure 1: Diagram of proposed approach to assessing Rosetta three-dimensional protein
domain structure predictions. GMMs estimate the likelihood that the prediction and its
closest PDB match are functionally similar.
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2 Classification with Gaussian Mixtures

We consider two classes, Cs and Cd, which respectively include the predictions that belong
to the same SCOP superfamily as their PDB match, and the predictions that do not. The
probability distribution of each class is modeled by a linear combination of multivariate
Gaussians,

p(x|C) =

K
∑

k=1

wkN (µk,Σk|C) ,

K
∑

k=1

wk = 1 (1)

where x is the vector of features used for classification, C = {Cs, Cd}, N (µk,Σk|C) is the
k-th Gaussian component of the mixture with mean µk and covariance matrix Σk, and wk is
its associated weight. Each feature vector, corresponding to a pair Rosetta prediction/PDB
match, is presented to each model, producing two likelihood scores, p(x|Cs) and p(x|Cd).
The decision rule for classifying the prediction, formulated in terms of the log-likelihood
ratio is,

log

(

p(x|Cs)

p(x|Cd)

)

> T, (2)

where T is a threshold value.
We use diagonal Σk in our implementation to reduce the number of parameters to train

and thus speed up model training, which is carried out with the EM algorithm1. The
Bayesian Information Criterion (BIC) [10] was used to determine that Cs is well modeled by
K = 10 and Cd is well modeled by K = 70. The GMMs are trained and tested with 5-way
cross validation

3 Measures of Structural Similarity

Based on theoretical and data analysis, we use the following features:
Mammoth z-score. Mammoth is a sequence-independent structure-to-structure compari-
son approach which is widely used in protein structure studies [11]. The Mammoth z-score
is based on the root-mean-squared deviation (RMSD) of structural alignments and takes
into account the number of residues in a structure. Figure 2a shows the distributions of
Mammoth z-scores for the Rosetta protein structure predictions in our data set. The z-score
distribution for predictions in Cs is more heavily weighted toward the higher values than that
for predictions in Cd. However, a large overlap between the two curves remains, indicating
that a good Mammoth z-score is not always a good indicator of functional similarity.
α-helices and β-sheets. Tertiary protein structures are made up of smaller, secondary
structures which reflect the chemical interactions between the residues. These secondary
structures are linked to protein function. Among them are α-helices and β-sheets. An α-
helix is a right handed helix composed of 3.6 residues per turn. It is formed by a series

1We used a subset of the LNKNet software package from MIT Lincoln Laboratory [9], adapted for
MATLAB.
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of hydrogen bonds between the peptide C=O bond of an amino acid with the peptid N-H
bond on the amino acid four residues away. This series of bonds forms a tightly packed
3D cylindrical structure, or helix, which encloses the hydrophobic residues and exposes the
hydrophilic ones. A β-helix is formed by hydrogen bonds between neighboring peptide
strands. The strands can be oriented in either a parallel or antiparallel structure. The
bonded sections ripple into a characteristic pleated sheet [12].

The percentage of α-helices and β-sheets in the prediction and its match is a measure
of structural similarity. Figures 2b and 2c show plots of the percentages of α-helices and
β-sheets for Cs and Cd Note that for predictions that have a PDB match in the same SCOP
superfamily the percentages are more tightly clustered.
Sequence length. Predictions that are close in length to their PDB match are more likely
to be in the same superfamily than those that are far apart. Figure 2d shows the distribution
of the prediction length and the PDB match length. Note how the length of the predictions
in Cs are much more tightly correlated than those in Cd.

Each Rosetta prediction and its PDB match are represented by a feature vector x with
4 elements. Let r be the ratio of the prediction length to its PDB match length. Then
x1 = r − 1. Let (αp, βp) and (αm, βm) be the percentages of α-helices and β-sheets in the
Rosetta prediction and its PDB match respectively. Then, x2 = αp −αm and x3 = βp − βm.
Lastly, x4 is the Mammoth z-score of each prediction to its PDB match.

4 Results and Discussion

Our data set consists of 192,240 total Rosetta prediction/PDB match pairs for 8,560 do-
mains; 4,745 pairs are in Cs and the remaining 187,495 are in Cd. The PDB matches are
determined by comparing the Rosetta predictions to the ASTRAL compendium, which or-
ganizes the structures listed in the PDB in domains of low functional redundancy [13, 14].
The search is limited to a subset of PDB domain structures that have less than 40% sequence
homology. Higher homology within the set of possible PDB matches indicates very close
structural similarity, and would needlessly match Rosetta predictions to structurally redun-
dant domains. Furthermore, care is taken to ensure that the subset of allowed PDB matches
does not include the same sequences used as test structures in Rosetta. This would create
self-matches, and the likelihood score would be biased. Finally, only prediction/match pairs
with a Mammoth z-score greater than 4.5 are considered, as lower scores indicate a very
poor structural match.

Figure 3 shows the distribution of the log-likelihood scores for Cs and Cd. The two
distributions are well separated, with the higher scores corresponding to Rosetta predictions
deemed functionally very similar to their PDB matches, and lower scores indicating poor
functional matches.

Binary classification of the predictions is achieved by comparing the scores to a threshold
value, as in equation 2. Figure 4 shows the percent of false positive, false negative, and total
error as a function of the threshold T. For T=0, the classifier achieves a false positive rate
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of 17.31% and a false negative rate of 22.36%. The total error is 17.28%. Due to the high
Cd/Cs ratio, the total error tracks the false positive error.

These results are significant because they allow us to make likely functional predictions in
spite of the high number of structural predictions that cannot be tied to function. In partic-
ular, even for sequences with weak homology, protein function can be predicted accurately.

5 Summary

We have described an approach for assessing the quality of three-dimensional protein do-
main structure predictions produced by Rosetta. Our approach, based on Gaussian mixture
models, estimates the likelihood that a prediction and its PDB match are functionally sim-
ilar. Performance curves show that our approach allows successful functional predictions
even when a high number of structural predictions cannot be tied to function. In the par-
ticularly interesting case of newly discovered sequences with no link to known domains, de
novo methods for structural prediction combined with statistical inference for functional
prediction provide a powerful approach to understanding and designing cellular processes.
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(a) Mammoth z-score.
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(b) Percent α-helices
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(c) Percent β-sheets.
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Figure 2: Four features used to measure structural similarity and predict the function of
Rosetta predictions. The blue squares are prediction/match pairs in the same SCOP super-
family (Cs); the red circles are pairs in different superfamilies (Cd). To limit file size, only 1
in 10 predictions in Cd are plotted. The overall character of the scatter plots is not affected.
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Figure 3: Log-likelihood ratio distributions for Cs and Cd. Scores lower than -15 are trun-
cated for display purposes.
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Figure 4: Error performance for different values of the threshold T.
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