Eithon Cadag Lecture 15, 11/17/04 CSE527

Notes on GenScan

- Generalized HMM transition probabilities based on sequences, not single nucleotides
 - $P(sequence \mid model)$
- Length distribution
 - introns geometric (self-loop)
 - terminal exons modeled empirically
- Submodels
 - properties vary by G+C content
 - GHMM allows submodels based on G+C
- Features
 - Intron structure sequences as logo representation
 - 5'---exon---AG | GTAAG(donor)---intron---(acceptor)TTTxCAG | G---exon---3'
 - * conservation in exons
 - * polymerase transcribes to RNA
 - * Spliceosome recognizes features, splices out introns
 - * donor sites can be expressed as graphical forms of WMM (0th order)
 - $\cdot\,$ shows relative frequency
 - $\cdot\,$ size is inverse of entropy
- Acceptor splice sites (3' end of intron) 1st order

3' end polypyrimidine tract, 2nd order Markov Model (average over 5 preceding positions to revise training data)

- Donor splice sites (5' end of intron)
 - poor matches at one end can be compensated for by strong matches on the other end

$$-\chi^2$$
 test

- * $\chi^2 = \sum_i \frac{(observed_i expected_i)^2}{expected_i}$
- * over 16 cells of 4x4 {A, C, T, G}
- * if 4x4 independent, observation-expected = 0
- * χ^2 not robust with small counts

- $\ast\,$ long-range dependencies in donor splice sites WMM not adequate; higher-order MM requires more training data
- $\ast\,$ U1 RNA interacts with proteins and splice sites
 - $\cdot\,$ its sequence is roughly complementary to the donor splice site consensus sequence
 - $\cdot\,$ hybridizes with transcript to find its position
- maximal dependance decomposition model (decision tree) rebuilds χ^2 for new subsets on remaining positions
 - * generate 5' splice site
 - \ast apply a new WMM to each node in tree compare WMM to background model
- Summary of Burge and Karlin
 - coding DNA non-random
 - use of disparate and different models integrated together
- BK training sets
 - over-representation in single exon, highly-expressed, and moderate-sized genes
 - will only do as well as training set (won't find novel genes)
- Problems with all methods
 - pseudo-genes non-functional look-alikes (may have a poly-A tail)
 - short ORFs
 - sequencing errors (particularly frameshifts)
 - non-coding RNA
 - overlapping genes
 - alternative splicing/polyadenylation
 - hard to identify novel genes
 - species-specific peculiarities
- Other ideas
 - database search look for similar-looking regions that are known coding regions
 - comparative genomics comparing regions between related organisms to find commonly-conserved areas

Pre-mRNA secondary structyre predictions aids splice site recognition

• pre-mRNA - direct transcript of genome (no splicing, polyadenylation)

- hypothesis: secondary structure has important information in addition to primary sequence information
- 1st order WAM/MM (calculate log likelihood ratio)
- Secondary structure statistics
 - optimal folding energy calculate stability of folded versus unfolded
 - max helix score 3+ paired consecutive bases nearby
 - * calculate $P_{HStart,x}$ and $P_{HEnd,x}$
 - * $maxhelix_i = max(P_{HStart,x}, P_{HEnd,x})$ $x\epsilon(i-5, i+5)$
 - * highest probability that a helix will form nearby
 - neighbor pairing correlation change pre-mRNA alphabet from nucleotides to structural symbols
 - * O unpaired base
 - * P paired base
 - $\ast\,$ S paired stacked base