

Cluster-based Imputation of Missing Values in Microarray Data

Nils Gehlenborg · December 2003 gehlenbo@cs.washington.edu

Outline

1. Motivation

2. Algorithm

- key idea
- a bit more detail
- 3. Other approaches
- 4. Results
- 5. Discussion
- 6. Conclusion

Motivation

- Missing values cause a lot of trouble.
 - similarity/dissimilary measures
 - principal component analysis (PCA)
 - SVMs
 - clustering
- Missing values are inconvenient.
- There is an expensive solution.
 - repeat experiments \rightarrow more complexity and not perfect
- There are cheap (destructive) solutions.
 - casewise deletion \rightarrow possibly no valid cases
 - pairwise deletion \rightarrow genes become more similar

3

Reasons for missing values

- Arbitrarily missing values.
 - no spot intensity measured
 - negative background corrected spot intensity
 - array handling
 - "low quality spot" (cDNA arrays image analysis)

- ...

- Systematically missing values.
 - array production

CLIMP

Example

(edited from Stanford Microarray Database)

Starting points

- Image(s) of scanned microarray.
 - find reasons for missing values
 - identification of systematic errors
 - extremely complex to analyze
- Annotated image analysis output.
 - identification of systematic errors
 - different for different types of microarrays
- Expression matrix.
 - least information, but most general
 - probably most wide-spread format

Problem

• Given an expression matrix with missing values, how do we estimate (impute) the missing values?

- Estimate missing values from similar genes, taking into account the correlation structure.
- How do we find similar genes?

8

Clustering

- How many clusters are there?
- Define an upper bound for cluster size!

• Use genes in cluster for estimation.

Details

- Clustering for each *pattern of missingness* (POM).
 - POM = pattern of missing values in a row = a set of columns
 - length of a POM = cardinality of set of columns

Details

- *Base matrix* = all rows with POM of length 0 (here: POM 1).
- Cluster base matrix with all rows have the same POM.
 - leave out missing conditions
 - use hierarchical clustering with complete-linkage for dense clusters

- Compute missing value as rank-weighted average from base matrix genes in corresponding cluster.
- Cluster size below threshold?
 - use k nearest neighbors

Other (constructive) methods

• Simple methods

- fill in zeros
- fill in column- or row-averages
- Troyanskaya *et al.* 2001
 - *k* nearest neighbors (KNN)
 - singular value decompositon (SVD)
- Oba *et al*. 2003
 - Bayesian Principal Component Analysis (BPCA)
- Zhou *et al.* 2003
 - (non)-linear regression with Bayesian gene selection

Evaluation

- Comparison of CLIMP, KNN and BPCA.
- Data sets:
 - Spellman *et al.* 1998, yeast cell cycle α-factor- and *cdc15*-based synchronization (18 and 15 conditions)
- Parameters to be chosen:
 - upper and lower bound (here: 35 and 20)
 - *k* (here: 17)
 - clustering algorithm (here: complete-linkage)
 - distance measure (here: Euclidean)
- Amount of missing data:
 - 1%, 2%, 5%, 10%

Evaluation

- Different number of genes from each test set: 100, 500, 1000 and 2000 out of ~ 6100.
- Performance evaluated by the normalized root mean squared error (NRMSE) of the estimated matrix (*E*) vs. the original matrix (*O*).

- NRMSE =
$$\sqrt{\frac{mean(O-E)^2}{variance(O)}}$$

- if *NRMSE* close to 0, then *E* more accurate (*NRMSE* = $0 \rightarrow E = O$)
- if NRMSE close to 1, then E less accurate

NRMSE on test data

0.35

0.30

0.25

0.20

0.15

0.10

0.00 0.05

NRMSE

NRMSE

0.10

 α -factor

KNN

1 1 1 0.04 0.06 0.08 0.10 proportion missing

Discussion

- CLIMP has some weak spots.
 - base matrix
 - how to find good values for parameters (\rightarrow usage of KNN)
 - runtime
- Performance might be increased in several ways.
 - genes with estimated missing values might be added to base matrix
 - analysis of values used for estimation

- base weighted average on distance not on ranked distance
- selection of parameters appropriate for given expression matrix

Conclusion

- The bigger the base matrix, the more information, the better the results.
- CLIMP is slower than KNN and BPCA, but time is not an important criterion in missing value estimation.
- Performance of CLIMP is at least equal to that of KNN and might be improved.
- Bayesian methods are likely to remain significantly better.

Handle estimated values with care, they still might be completely wrong!

