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Motivation

* Missing values cause a lot of trouble.

— similarity/dissimilary measures
— principal component analysis (PCA)

— SVMs

— clustering
* Missing values are iconvenient.
* There is an expensive solution.

— repeat experiments — more complexity and not perfect
* There are cheap (destructive) solutions.

— casewise deletion — possibly no valid cases

— pairwise deletion — genes become more similar
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Reasons for missing values

* Arbitrarily missing values.

— no spot intensity measured

— negative background corrected spot intensity

— array handling

- "low quality spot" (cDNA arrays image analysis)

* Systematically missing values.

— array production
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(edited from Stanford Microarray Database)




Starting points

* Image(s) of scanned microarray.

— find reasons for missing values
— 1dentification of systematic errors

- extremely complex to analyze
* Annotated image analysis output.

— 1dentification of systematic errors

— different for different types of microarrays
* Expression matrix.

— least information, but most general

— probably most wide-spread format
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columns = conditions
rows = genes
color = expression profile

* (Given an expression matrix with missing values, how do we
estimate (impute) the missing values?
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* Estimate missing values from similar genes, taking into
account the correlation structure.

* How do we find similar genes?
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* How many clusters are there?

* Define an upper bound for cluster size!
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maximal cluster size =5

* Use genes 1n cluster for estimation.
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* Clustering for each pattern of missingness (POM).

— POM = pattern of missing values in a row = a set of columns

— length of a POM = cardinality of set of columns
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Details

* Base matrix = all rows with POM of length 0 (here: POM 1).

e (Cluster base matrix with all rows have the same POM.

— leave out missing conditions

— use hierarchical clustering with complete-linkage for dense clusters
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* Compute missing value as rank-weighted average from base
matrix genes in corresponding cluster.

e (luster size below threshold?

— use k nearest neighbors
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Other (constructive) methods

* Simple methods

— fill 1n zeros

— fill in column- or row-averages
* Troyanskaya et al. 2001
— k nearest neighbors (KNN)

— singular value decompostion (SVD)
* Obaetal 2003

— Bayesian Principal Component Analysis (BPCA)
 Zhou et al. 2003

— (non)-linear regression with Bayesian gene selection
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Evaluation

* Comparison of CLIMP, KNN and BPCA.

e Data sets:

— Spellman et al. 1998, yeast cell cycle a-factor- and cdcl5-based
synchronization (18 and 15 conditions)

* Parameters to be chosen:
— upper and lower bound (here: 35 and 20)
— k (here: 17)
— clustering algorithm (here: complete-linkage)
— distance measure (here: Euclidean)

* Amount of missing data:
- 1%, 2%, 5%, 10%
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Evaluation

* Different number of genes from each test set: 100, 500, 1000
and 2000 out of ~ 6100.

* Performance evaluated by the normalized root mean squared
error (NRMSE) of the estimated matrix (£) vs. the original
matrix (O).

_ )
—NRMSE:\/mean(O E)

variance(O)

- 1f NRMSE close to 0, then £ more accurate (NRMSE =0 — E=0)
- 1f NRMSE close to 1, then E less accurate
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NRMSE on test data
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* CLIMP has some weak spots.

— base matrix
— how to find good values for parameters (— usage of KNN)

— runtime
* Performance might be increased in several ways.

— genes with estimated missing values might be added to base matrix

— analysis of values used for estimation
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- base weighted average on distance not on ranked distance

— selection of parameters appropriate for given expression matrix
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Conclusion

* The bigger the base matrix, the more information, the better the
results.

e CLIMP is slower than KNN and BPCA, but time 1s not an
important criterion in missing value estimation.

* Performance of CLIMP i1s at least equal to that of KNN and
might be improved.

* Bayesian methods are likely to remain significantly better.

Handle estimated values with care,

they still might be completely wrong!
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