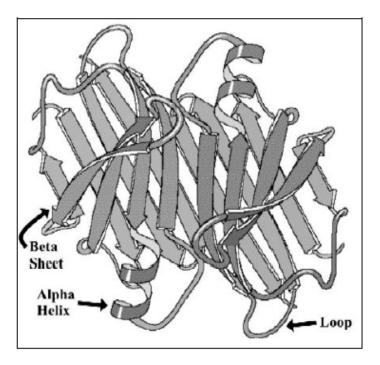
Protein Structure Prediction Using Neural Networks

Martha Mercaldi Kasia Wilamowska

Literature Review December 16, 2003

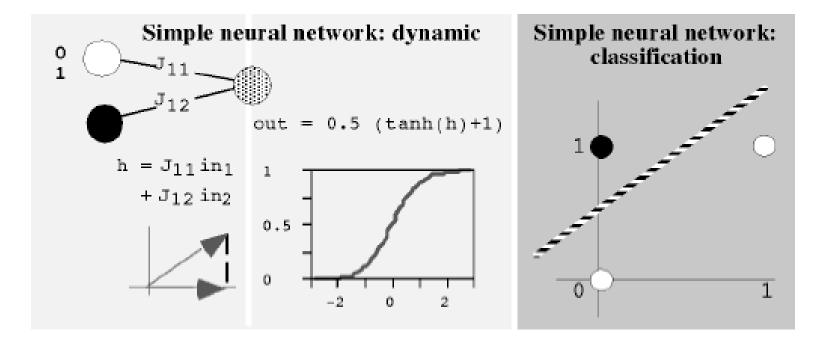
The Protein Folding Problem

DNA Sequence	AGGAAAAGCAGAATTACTAATTACCCT								
	AGG	AAA	AGC	AGA	ATT	ACT	AAT	TAC	CCT
Amino Acid	R	К	S	R	Ι	Т	Ν	Υ	Р
Sequence	RKSRITNYP								

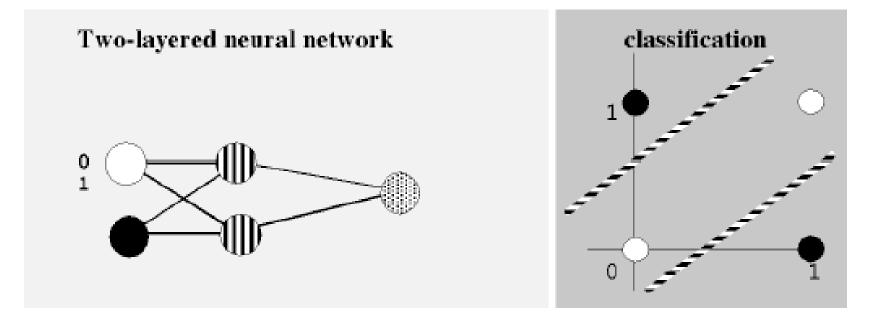


Evolution of Neural Networks

 Neural networks originally designed to approximate connections between neurons in the brain



Evolution of Neural Networks



Why use Neural Nets for Protein Folding?

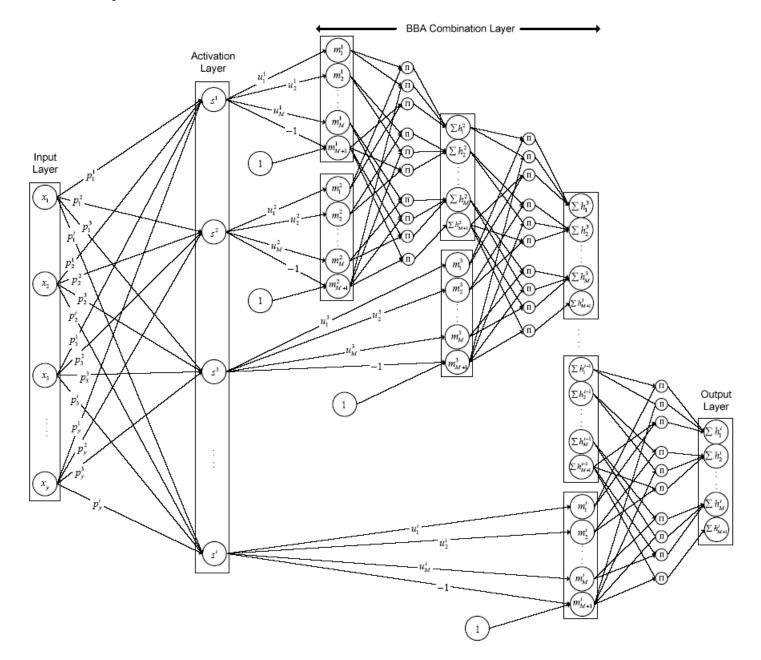
- Successful applications in:
 - Secondary structure prediction
 - Solvent access
- No "inherent shortcoming" yet found
- Can incorporate evolutionary information via multiple alignments
- Detect previous misclassifications

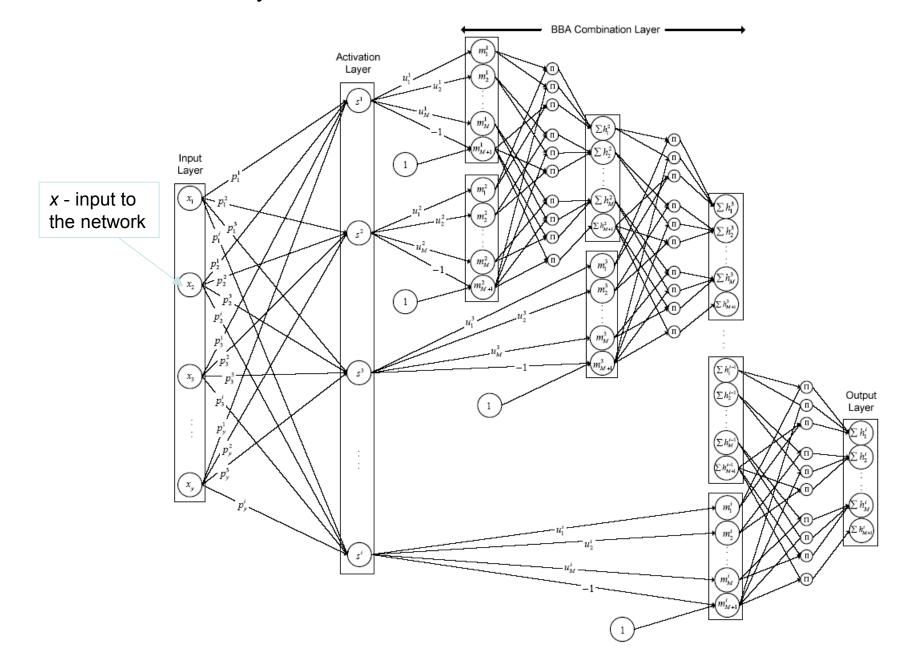
- Purpose
 - Using neural nets, effectively predict the secondary structure of proteins.
- Current best for secondary structure prediction is SSpro8 with accuracy in the range of 62-63%

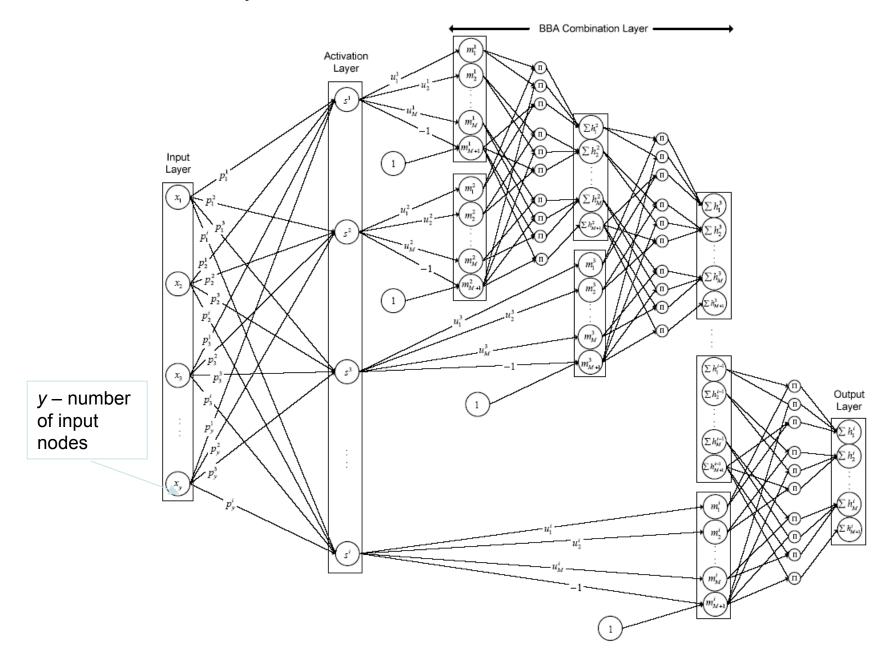
- Input to the system
 - Can choose to use DNA or amino acid sequences
 - SSpro8 uses amino acid sequences
 - The authors' system, UTMPred, uses DNA
- Output forms consisting of alpha helices, beta sheets and loops expanded to eight structure forms

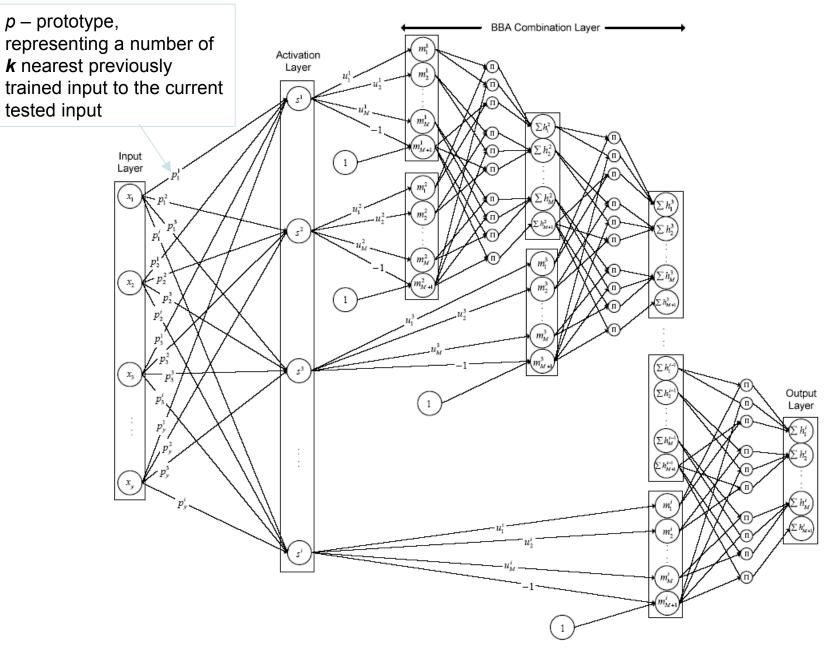
Regular	Expanded	Abbreviation	
Sheet	Residue in isolated β -bridge	В	
	Extended strand in $\boldsymbol{\beta}$ ladder	Е	
Helix	3-helix (3/10 helix)	G	
	Alpha helix	Н	
	5 helix (π helix)	Ι	
Loop	Bend	S	
	Hydrogen bonded turn	Т	
	Connecting region	С	

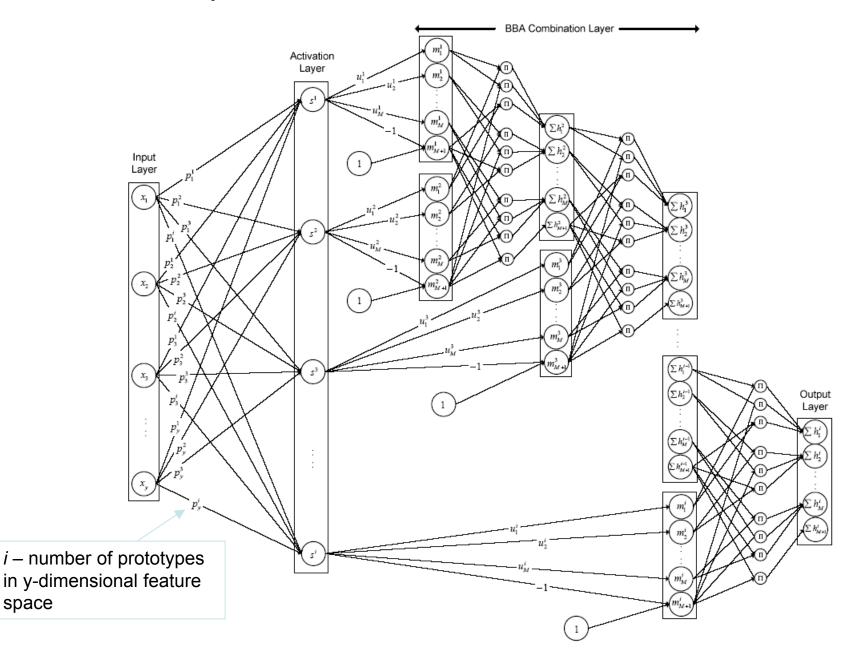
Protein Secondary Structure Forms

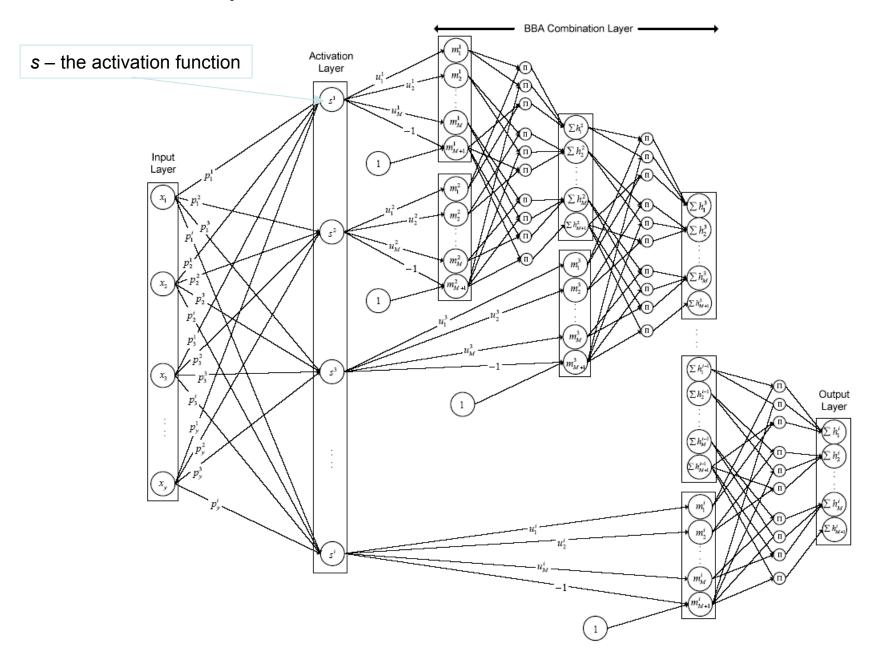


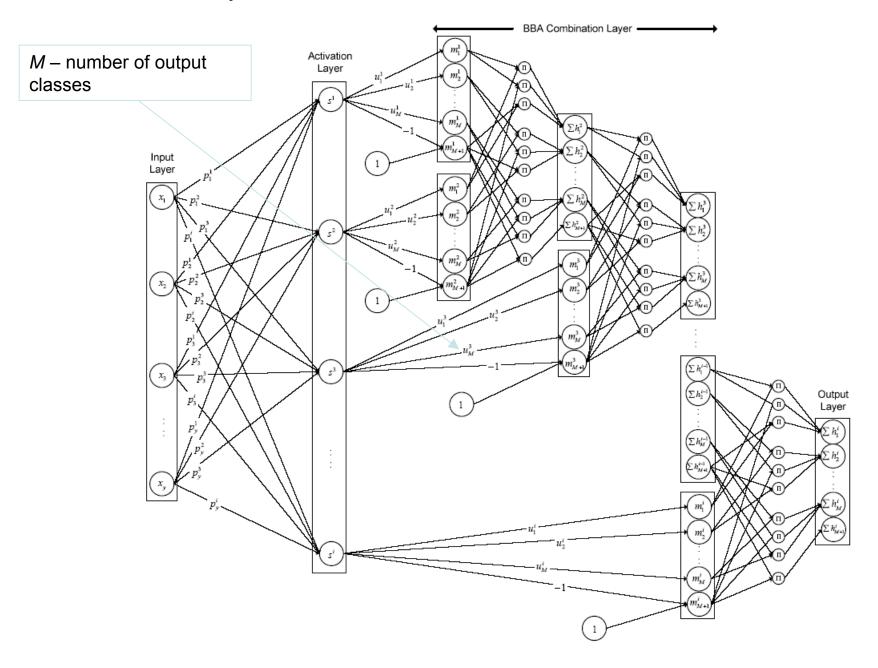


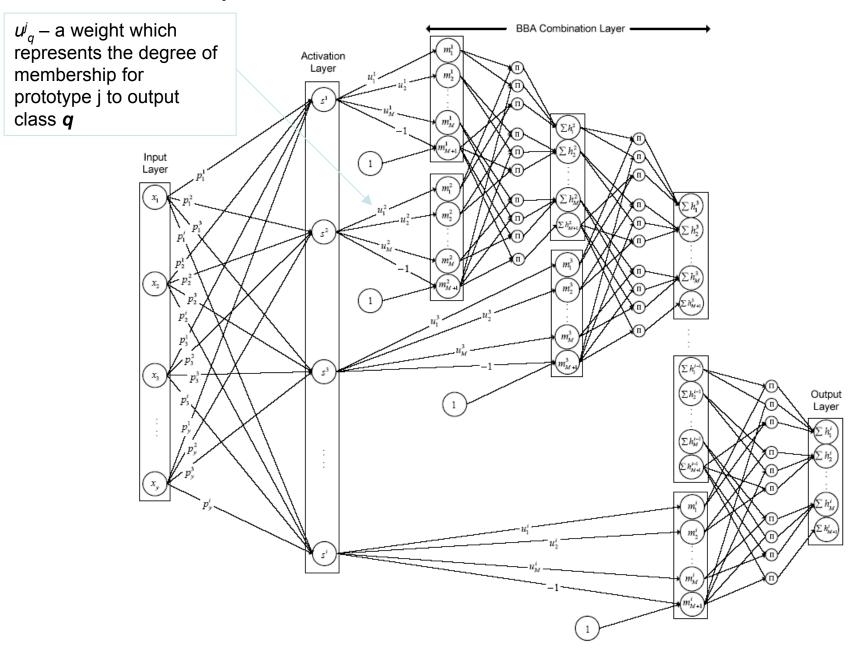


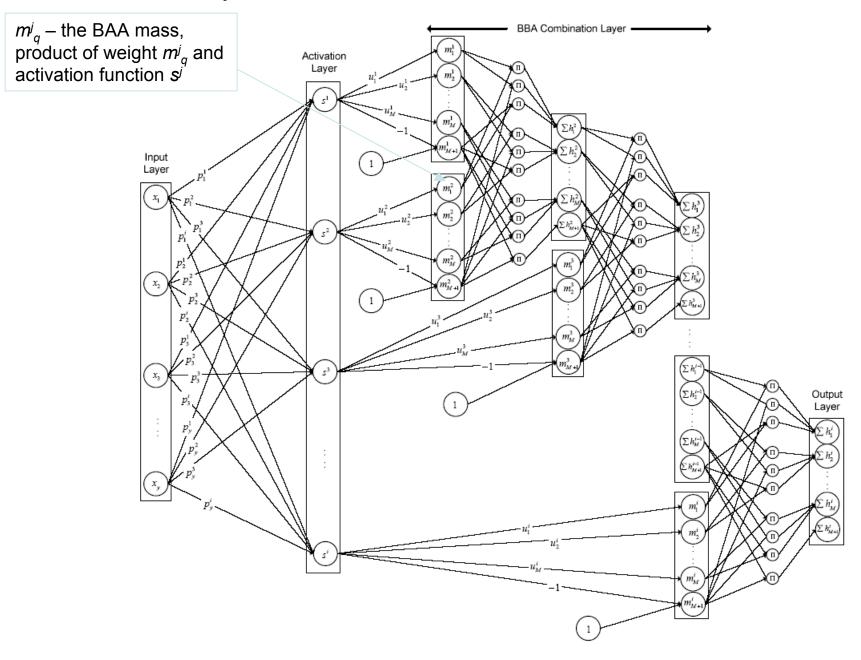










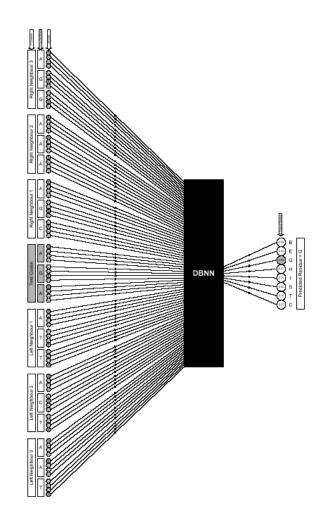


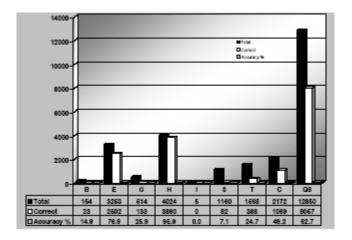
BBA Combination Layer m_1^1 Activation Layer m_2^1 h_{q}^{j} – the conjunctive combination of the BBA's $\sum h_i^2$ Input Layer 1 x_1 s² p_1' m m_2^2 5³ Output Layer $\sum h_{2}^{i}$ m_1^i

- The DBNN input are DNA sequences converted to binary format prior to use
- The sequences are:
 - 88 Escheichia coli proteins
 - 25 yeast Saccharomyces cerevisiae proteins
 - 166 mammalian proteins(80 of which are human)

Nucleotide	Binary Form		
А	1000		
С	0100		
G	0010		
Т	0001		

 The input window size for UTMPred is set to 7 codons, which results in 84 input nodes and 8 output notes which represent the expanded structural forms.



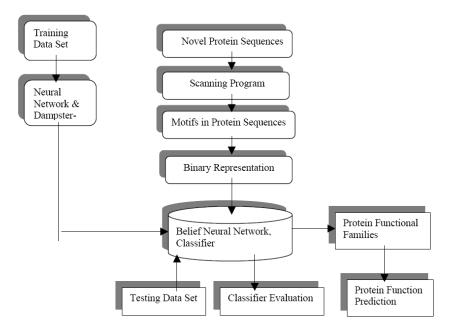


	e Data roteins)	Training Data (138 Proteins)		
Structure	Frequency	Structure	Frequency	
В	644	В	289	
Е	11570	E	5649	
G	1827	G	896	
Н	16791	Н	8013	
I	20	I	15	
s	4613	s	2177	
Т	5995	Т	2867	
С	8525	С	4113	
Total	49985	Total	24019	

 UTMPred used 200 prototypes and after the training was completed, the system was able to predict H and E forms with accuracy above 75%. At the same time, the system had difficulty predicting form I, due to a small amount of data in the training samples.

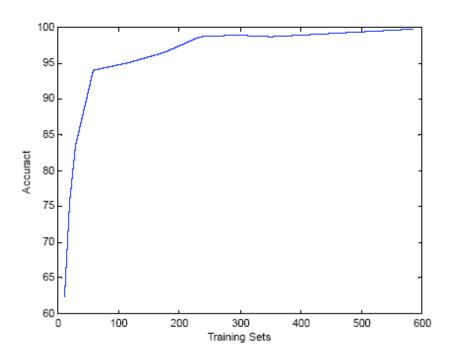
- Purpose
 - Using neural networks, efficiently predict protein function
- Using databases such as Prosite, Pfam, and Prints, either query the databases for motifs within a protein in question, or query for an absence or presence of arbitrary combinations of motifs.

- Given a training set, induce a classifier able to assign novel protein sequences to one of the protein families represented in the training set
- Once trained, the classifier will be able to predict novel proteins into specific functional families based on its knowledge of the training set



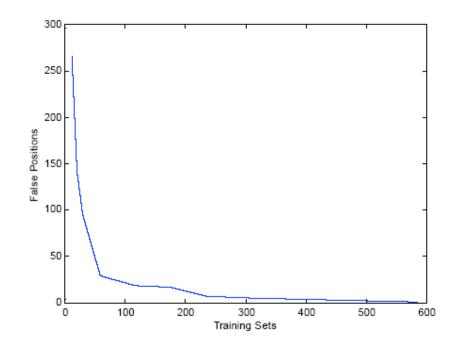
- Input data
 - From the Prosite database containing over 1100 entries. Each entry describes a function shared by some proteins. In the experiment one Prosite documentation entry corresponded to a protein class, and each protein class could, in turn, be characterized by one or more motif patterns/profiles. Only motifs considered significant matches by profileScan were chosen.
- DBNN was used as the classifier.

- 585 proteins belonging to one of ten classes were used, out of which subsets of varying size were picked randomly to become the training set.
- Once the DBNN was trained, all 585 proteins were used as the test set to determine accuracy



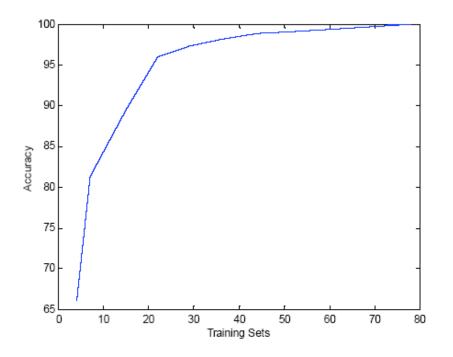
With only 10% of the total training samples, DBNN could be constructed to classify proteins with a 95% accuracy.

- The number of false positives generated by DBNN were significantly lower than those resulting from a Prosite search.
- As the size of the data set approaches 100%, the false positives discovered by DBNN approaches zero.



The number of false positives resulting from the use of the DBNN trained using training sets of different sizes.

- A second data set of 73 protein sequences drawn from five classes were used to build a DBNN classifier
- Using the DBNN classifier built by random sized datasets, the output exceeded 96% accuracy when the training set was greater or equal to 22
- Once the input contained more than 80% (58 or more sequences) of the dataset, all sequences were correctly predicted



Result of classifying proteins containing common motifs

Future Work

- Ultimate solution to "protein folding" will probably be a hybrid
- Neural networks likely to be included due to their successful application to related problems
 - Secondary structure
 - Solvent access
 - Distance between residues in final structure
 - Protein interface recognition
- In addition, neural nets can combine knowledge from multiple sources

Bibliography

- B. Rost. "Neural networks for protein structure prediction: hype or hit?" Artificial intelligence and heuristic methods for bioinformatics (2003): 34-50.
- S.N.V. Arjunan, S. Deris, R.M. Illias. "Protein Secondary Structure Prediction Based on Denoeux Belief Neural Network." <u>ICAIET</u> <u>Proceedings</u> (2002): 554-560.
- N.M.Zaki, S. Deris, S.N.V. Arjunan. "Assignment of Protein Sequence to Functional Family Using Neural Network and Dempster-Shafer Theory" <u>Journal of Theoretics</u> 5-1 (2003).

Background information

- S.N.V Arkimam, S. Deris, R.M.Illias. "Prediction of Protein Secondary Structure" <u>Jurnal Teknologi</u> 35(C) (2001): 81-90.
- T.Wessels, C.W. Omlin."Refining Hidden Markov Models with Recurrent Neural Networks".