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Introduction

To fully understand the function of genes in higher eukaryotes, one has to know the complex
regulatory mechanisms that control gene expression. It is well-known that finding
transcription factor binding sites can be a key to “crack” these mechanisms. Therefore, many
techniques and algorithms that tackle this task have been developed and are available.
However, their capabilities are limited: One reason is that short transcription factor motifs
tend to occur frequently outside promoter regions, resulting in a large number of false
positives. Another reason is that usually multiple transcription factors act in concert. Their
motifs have to be aligned within a certain distance and often ordering. These cis-regulatory
modules (CRM’s) are typically a few hundred base pairs long.

Finding regulatory modules

A common approach to finding regulatory module, is to consider statistical significance of
transcription factor binding motif clusters. MCAST, which is part of MetaMEME1, uses
exactly this idea. As input, it requires a set of motifs, each with its position-specific
probability matrix (PSPM) and its occurences in a DNA sequence. This information can be
obtained by running MEME2, a motif discovery tool, on a DNA sequence. MCAST then
builds a Hidden Markov Model (HMM) according to this data. The HMM represents a
statistical model for a module, and contains an intra-module spacer state, an inter-module
spacer state and each motif as a state. The Viterbi algorithm then uses the HMM to find
statistically significant sites.

This general approach is not new, however, the authors have improved it in a number of
ways: The HMM can be created using a linear topology, a star topology or a complete
topology. The latter being more flexible, but requiring many parameters. Another main
improvement solves a problem that all HMM’s have: Since transitions are Markov, gap
lengths are usually distributed geometrically which is not true for real data. The authors
created a sophisticated scoring function that among other things allows arbitrary distributions
for spacer lengths. Additionally, they tried to learn the transition probabilities of the HMM
using the EM algorithm. However, they mentioned that this is not yet feasible due to the
limited amount of reliable data that is available.

                                                  
1 MetaMEME - Motif-based hidden Markov modeling of biological sequences is available from
http://metameme.sdsc.edu/
2 Multiple EM for Motif Elicitation (MEME) can be downloaded from http://meme.sdsc.edu
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Architecture

My application is object-oriented and based on JAVA. It is a simplified version of the
approach that has been described. It only considers linear HMMs and uses the standard log-
odds scoring function. The following figure shows an overview.

MEME delivers a set of motifs with PSPMs and their occurences. Based on that information,
a Linear HMM is built and the Viterbi algorithm applied. It delivers the most probable path
through the model and its probability.

Testing on Simulated Data

Since results on real data depend on a large number of factors, it is recommendable to first
test the performance of the algorithm on simulated data. I developed a small program that
uses a given HMM and generates a random sequence according to background noise and the
HMM. The actual states that served for generating the sequence are being stored in a log file
for later comparison with the results of the module finding algorithm.
Of course, the probability of detecting the module correctly in the simulated data depends on
the PSPM’s of the motifs, the background distribution and especially the length of the motifs
and the number of motifs.
In the following example I used two very short Transcription Factor binding motifs and
connected them sequentially through a Linear HMM. The used motifs are explained later,
when the same HMM will be applied to real data. The entire sequence is 16,000 bp long.
I used a sliding window and calculated the log-odds score in each position. The results are
shown in the following figure

The motif was found, i.e. it had the highest score.
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Figure 1. Overview of the architecture

Figure 2. The above diagram shows the log-odds scores. Below, blue indicates that the data was generated from
the background model. Red indicates, it was generated by the HMM.
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Real Data

Testing the developed algorithm on real data turned out to be much harder than on simulated
data. The reasons are various. There is only very limited well known data about regulatory
modules available. Most research work focuses on one of the following two datasets: There
are about 20 Drosophila developmental genes of which some CRM sequences are known.
Those sequences can be obtained from [4]. Another dataset is from human, however I focused
on the Drosophila dataset.
Some research in this field is obviously inspired by a simple and successful experiment [3].
About 1-Mb of DNA around the even-skipped gene was scanned using a 700-bp window.
Sites that contained at least 13 predicted Transcription Factor binding sites (Bcd, Cad, Hb, Kr
and Kni) correlated with known CRM sites unexpectedly well. In this experiment the relative
ordering and distances between the binding sites was entirely ignored.
I first tried to extract the binding site motifs and their relative ordering from the sequences
that contained known CRMs (available at [4]) using MEME. However,
MEME did not precisely detect the known motifs (Bcd, Cad, Hb, Kr and Kni). I used “meme
–dna –revcomp –mod tcm –minw 8 –maxw 11 –nmotifs 5”. However, even helping MEME
by adding sample motif sequences, restricting the CRM sites and tweaking the parameters did
not lead to success. Probably some motifs are not so clear from a statistical perspective.

I then used PSPM’s for the five motifs which were available from [5], and explicitly aligned
the motifs and the known CRM’s using MAST3. The alignments are shown in the following
figure:

                                                  
3 Motif Alignment and Search Tool (MAST) can be downloaded from http://meme.sdsc.edu
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Figure 3. Known regulatory modules were aligned with a set of transcription factor motifs. These are Hb
(cyan), Kr (blue), Bcd (red), Cad (purple), Kni (yellow). The output was generated using MAST.
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There is hardly any pattern in the alignment of the different motifs. Therefore, it makes no
sense to apply the presented algorithm with a large HMM to find regulatory modules.
However, there is obviously a large amount of Hb-binding sites, and they often appear in
pairs, e.g. in the first CRM. An obvious question is: Can this fact be used to identify the
regulatory modules? I developed a simple HMM (following figure) and ran the algorithm on
larger sequences.

I used a sliding window and calculated the log-odds score in each position around the Hairy
gene. The results are shown in the following figure.

The results are not very clear. However, the scores in the exons (green) tend to be lower than
average, while the scores (at least in the in the first 3 CRM’s) are above average. There seems
to be a region around 10,000 bp that has rather high scores, but has not been previously
identified as a CRM.

Discussion
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Figure 4. The linear HMM used. It contains the
Hb-motif twice.

Figure 5. Log-odds scores. Below, blue indicates that these regions are believed to be noncoding or that their
function was not yet discovered. Red regions represent known regulatory modules. The green regions are
exons.
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Interesting observations can be made by comparing the results of the same HMM on
simulated data and on real data. On average, the log-odds scores on the real data were
significantly higher than those on the simulated data, even in noncoding regions.

However, in general it is not possible to reliably detect CRM’s using the simple HMM
described above. Reasons:

• I only regarded motifs on one strand. However, the MAST experiments already
showed that some patterns appear on the opposite strand. To include both strands, the
HMM topology has to be extended.

• Also visible in the MAST results is that there is hardly any significant sequence of
motifs that appears in multiple CRM’s. Therefore, the Linear HMM approach fails. A
Complete HMM or Star HMM could improve results.

• Since I used a classical HMM, the length of spaces between motifs is distributed
geometrically. This model is definetly wrong, since short gaps will always be
preferred over longer ones. A solution would be to associate individual arbitrary
distributions to gap lengths.

• The biological processes are probably not fully understood and therefore no model is
absolutely accurate. The large number of available papers that deal with finding the
modules on the same small dataset (described above) shows that the task is not trivial.

• I simply used the log-odds score as a scoring function. [1] and others have defined
sophisticated scoring functions that span hundreds of lines of code and that include
many tweakable parameters.

Future Work

Timothy Bailey and William Noble [1] proposed to use the EM-algorithm to learn the
parameters of the Hidden Markov Model, i.e. the transition probabilities. However, since few
transcription factor binding sites are exactly known, the learning approach is infeasible at the
time. As more and more data becomes available, the learning performance could certainly
improve. I am convinced that learning the transition probabilities could become crucial,
because the parameter values (e.g. transition probabilities) are now based on MEME output.
This however could be often unreliable. Furthermore, MEME itself uses thresholds for the
alignment and doesn’t even output occurences with weaker agreements. This data could still
be valuable for defining the right HMM. Applying a training method could solve these
problems.
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