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1 Sources of Error in Microarray Results

DNA microarrays are a powerful technology for analysis of gene expression levels within cells. Both the
cDNA and oligonucleotide technologies for microarrays are fairly young and are prone to a broad collection
of errors and inaccuracies [KYML02]. In this paper we briefly discuss some sources of error and detail a
variety of methods for normalizing the data with respect to some of these error sources.

Essentially microarrays operate by attaching fragments of single-stranded DNA to a small glass plate or chip
in a grid pattern. Each of the thousands of spots on the grid contains many copies of a unique sequence. A
sample containing unknown quantities of mRNA sequences is deposited on each spot on the plate. mRNA
sequences in the sample hybridize with the single-strand sequences attached to the chip. The sample mRNA
is tagged with a dye or marker which will be visible on an image of the chip. Genes with higher expression
levels appear as spots with higher intensities on the scanned slide image. With cDNA technology red and
green dyes are used to run two experiments simultaneously on the same slide. With the oligonucleotide
technology each slide runs a single experiment using only a single marker.

These technologies rely on hybridization between the sample strands and the strands affixed to the slide. One
class of potential inaccuracies occurs because hybridization can occur without a perfect match between the
strands. Sequences which are mostly similar may still bond to some extent, confusing the results. Isoforms
of very similar sequence can often easily hybridize and mask the measurement of the target gene. The
sequences fixed to the slides are normally quite short and are often systematically selected from the 3′ end
of the target gene. Other genes of substantially different sequence, but with a similar 3′ end may therefore
bond to a given spot.

The oligonucleotide arrays use perfect match (PM) and mismatch (MM) pairs of spots to combat these probe
specificity issues. The MM spot has one base changed as compared to its matching PM spot. If a result
shows high expression levels on both a PM and an MM spot, the PM result should be discounted as it may
indicate the target gene is being overwhelmed by another similar sequence. Unfortunately, this calibration
can distort legitimate PM matches which also happen to successfully hybridize to the MM spot.

At a higher level there are larger questions about the accuracy of microarrays. There is evidence that slides
often contain misprinted spots with incorrect probe sequences attached. One analysis found over 20% of
the spots on a slide contained incorrect sequences. Further, comparing cDNA, oligonucleotide and more
traditional Northern blot analysis has shown wide discrepancies. The same sample analyzed by all there
technologies produced results that varied over almost two orders of magnitude [KYML02].

The remainder of this paper is concerned with addressing a specific subset of error sources.

• Dye color variation – The intensity of the red and green dyes used in cDNA microarrays may not be
directly comparable due to chemical differences in the dyes.

• Scanning variation – Results from different slides may be incomparable because of differences in the
scanning process.
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• Print-tip effects – The mRNA samples are spotted onto the slide with a grid of print tips. Results
from spots printed with different print tips may not be directly comparable due to differences in the
tip opening or accumulated wear and tear.

• Slide preparation and wet-lab variables – Differences in the process leading up to the actual microarray
experiment may introduce variations in the results. Slight temperature variations in the sample cultures
or differences in how the cultures are prepared for each slide are examples of this type of inacuracy.

• Variance increases with intensity – The variance of measurements appears to increase with the overall
expression level of a gene [HvHS+02]. A given increase in expression level is less significant for a highly
expressed gene making it hard to ascertain which results are indeed significant.

2 Correcting for Experimental Differences

The raw output of a cDNA microarray is the set of (log Ri, log Gi) tuples of red-green spot intensities scanned
from the slide. Usually these values have been background-corrected by substracting the intensity of the
nearby slide background. Given those values, we can define Mi = log Ri

Gi
and Ai = 1

2 log(RiGi) for each of
the genes on the slide. In this section we discuss different methods for obtaining M∗

i the normalized values
of Mi as covered in [YDLS01, PYK+03].

All of these normalization methods are based on the assumption that some of the genes have nearly constant
expression levels. For these constantly expressed genes we would expect Mi = log Ri

Gi
≈ 0 and any observed

deviation from Mi ≈ 0 is the result of some experimental difference such as a dye bias. Ideally, one should
only use the constantly expressed genes to determine the normalization adjustments for the whole collection.
In practice, there are a range of options available some of which are listed below. The best method for
identifying constantly expressed genes may depend on the specifics of the experiment. The normalization
methods we will discuss vary in their robustness when their inputs contain some differentially expressed
genes.

• All genes - The method for determining the normalization adjustments should be robust to outliers
(highly differentially expressed genes).

• Control genes - The experimental setup may include genes specially intended to be constantly expressed.
There may also be an expectation that certain genes will be constantly expressed due to biological
constraints (housekeeping genes).

• Rank invariant genes - If genes are rank ordered based on their log Ri and log Gi values, use that set
of genes whose rank is stable, or nearly stable, for normalization.

To normalize Mi, we need to estimate some normalization factor c such that M∗
i = Mi−c ≈ 0 for constantly

expressed genes. The normalization factor c will then be used to compute Mi∗ = Mi− c for all the (possibly
differentially expressed) remaining genes.

2.1 Global Normalization

Global normalization assumes that the red and green dye intensities are related by a constant factor. That
is, Mi ≈ α for the constantly expressed genes. Typically the constant α is estimated by taking the median
of the control genes. The normalized intensities are therefore M∗

i = Mi − α. Figure 1(A) shows a raw
microarray dataset without normalization and Figure 1(B) shows the same data after global normalization.

2.2 Linear Normalization

Linear normalization assumes that the relationship between the dyes depends on the overall intensity of the
dyes, Ai, in a linear fashion. So for constantly expressed genes Mi ≈ β0 + β1Ai for appropriate constants β0
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Figure 1: Scatter plots from [PYK+03] of (log Gi, log Ri) for (A) an unnormalized cortical stem rat cell microarray
data set (see Section 2.7); and that data (B) globally, (C) linearly, and (D) non-linearly normalized.
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and β1. These constants are typically estimated by a least-squares fit through the Mi vs. Ai plot of all the
control genes. The normalized intensities are therefore M∗

i = Mi−β1Ai−β0. Figure 1(C) shows the results
of linear normalization.

2.3 Non-Linear Normalization

Non-linear normalization also assumes that the dye relationship varies with intensity. Rather than fitting a
line through the data, the lowess fit of the data is used. Lowess produces a robust locally-linear fit of the
data. Since it is robust, it will tolerate some differentially expressed genes in the control group.

With this method we have M∗
i = Mi − c(Ai) where c(Ai) is the result of the lowess fit through the Mi vs.

Ai plot of all the control genes. Figure 1(D) shows the results of non-linear normalization.

2.4 Dye Swap Experiments

In a dye swap experiment the same pair of mRNA samples is hybridized against two microarrays with the
dye assignments reversed. This results in (log Ri, log Gi) results from one slide and (log R′

i, log G′
i) from

the other. Given this, we have Mi, Ai as before as well as M ′
i = log R′

i

G′
i

and A′
i = 1

2 log(R′
iG

′
i) from the

dye-swapped slide.

If M∗
i = Mi − c and M∗′

i = M ′
i − c′ where c and c′ are determined using any of the above methods, then we

should expect Mi − c ≈ −(M ′
i − c′). Since this is a dye swap experiment, we also expect c ≈ c′. Using these

assumptions Park, et al. derive

c ≈ 1
2

[
log Ri

Gi
+ log R′

i

G′
i

]
= 1

2 (Mi + M ′
i)

Any of the normalization methods (global, linear or nonlinear) can be applied to a dye-swap experiment by
using M ′′

i = 1
2 (Mi + M ′

i) and A′′
i = 1

2 (Ai + A′
i) in place of Mi and Ai.

2.5 Print Tip Effects

The sample mRNA is applied to each of the spots on a slide using a print tip. There are normally far fewer
print tips than the total number of genes, so sections of a slide are each spotted by a different tip. The
openings on the ends of these tips may be of different sizes or shapes, or may wear differently over time. As
such, the results from spots printed with different tips may not be comparable. The normalization techniques
discussed above can be used separately on each set of genes printed by a single print tip. Each print tip
group of genes should have it’s own normalization factor c estimated separately by whichever method is
chosen.

2.6 Oligonucleotide Microarrays

The above normalization techniques are equally applicable to a series of d single color oligonucleotide slides.
Say each slide k = 1..d produces a set of measured intensities yki for each gene i. Each slide k = 2..d can
be separately normalized against slide 1 using Mki = log yki

y1i
and Aki = 1

2 log ykiy1i. After all the slides have
been normalized in this fashion their results should be comparable to each other.

2.7 Evaluation of Methods

Park, et al. [PYK+03] analyzed a microarray data set from a study of cortical stem rat cells. In this
experiment I = 2 different (very closely related) tissue samples were hybridized against a cDNA microarray
at J = 6 different time points. As well, each microarray hybridization was repeated K = 3 times for a total
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Figure 2: Results from the Park, et al. [PYK+03] variance analysis showing the mean value of log σ2
l variance

estimates for various normalization strategies. O, G, L, N refer the original (not normalized) data and the globally,
linearly and non-linearly normalized data respectively. GP, LP, NP refer to those normalization methods applied
separately to the genes from each print tip group.

of 36 slide results sets. Each microarray contained spots for N = 3, 840 genes. The results data from this
experiment are yijkl, the logarithm of the red to green intensity ratio from group i = 1..I, at time j = 1..J ,
replication k = 1..K for gene l = 1..N .

The variance for each gene l can be estimated by σ2
l = 1

IJ(K−1)ΣiΣjΣk(yijkl−ȳij·l), where ȳij·l = 1
K ΣK

k=1yijkl.
We can examine the distributions of the l = 1..N variances σ2

l of each gene after the data has been normalized
by the various methods. Better normalizations will result in smaller variance estimates. Park, et. al, used
this model and a more flexible ANOVA model to estimate variance. The results shown in Figure 2 are from
the ANOVA model, but they are substantially similar to those from the above variance estimates.

Park, et al. conclude that the intensity dependant normalization methods (linear and non-lineaer) outperform
the global method. It is not clear that the non-linear method provides significant additional benefit beyond
the linear approach. They also conclude that within print tip normalization seems to provide enough benefit
to make it worth considering.

3 Variance Stabilization

The previously described algorithms focus on the goal of normalizing the intensities of microarray data.
In this section, we introduce techniques which have the additional goal of variance stabilization. These
algorithms transform the intensity data and replace the standard log intensity ratio metric (M) with a new
metric ∆h such that the variance v(hk) for a gene k is not dependent on the gene’s mean intensity uk. In
this section we describe a method due to Huber et al. [HvHS+02] from 2002. Similar work was done by
Geller et al. [GGHR03] in 2003. We begin by addressing the motivation for variance stabilization. We then
present the model due to Huber et al. [HvHS+02], and close with a discussion of the results.

3.1 Motivation

As we can see in Figure 3 (taken from Huber et al. [HvHS+02]), there is a strong dependence between
the variance and the mean. The variance has a non-zero y-interecept, and tends to increase approximately
quadratically with the mean. Huber et al. note that the same pattern was also visible in other experiments,
and with different array types (Figure 3 displays cDNA array data).

Variance stabilized data is desirable for microarray analysis because it allows for easier comparison between
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Fig. 2. Variance-versus-mean dependence v(u) in microarray data. Shown is the data from one mRNA sample, labeled both in red and green
and hybridized against a 8400-element cDNA slide. The plots show the variance versus the mean (left), and the standard deviation versus
the mean (right). The dots correspond to single-spot estimates v̂k = (y1k − y2k)2/2, ûk = (y1k + y2k)/2, the solid lines show a moving
average. The axis units are arbitrary.

Equation (2). First, this assumption implies that vk de-
pends on k mainly through the mean intensity uk, and that
other factors such as sequence-specific effects, or effects
associated with array geometry or the production process
may be neglected. This would have to be verified from
case to case, but appears to be plausible in many exper-
iments. Second, we make a particular parametric ansatz,
namely a quadratic function of the form (2). There are sev-
eral motivations for this. One is provided by the following
model for the measurement error of gene expression ar-
rays (Rocke and Durbin, 2001):

Y = α + βeη + ν, (10)

where β is the expression level in arbitrary units, α is an
offset, and ν and η are additive and multiplicative error
terms, respectively. ν and η are assumed to be independent
and normally distributed with mean zero. This leads to

E(Y ) = α + mηβ (11)
Var(Y ) = s2

ηβ
2 + s2

ν (12)

where mη and s2
η are mean and variance of eη, and

s2
ν is the variance of ν. Inserting Equation (11) into
Equation (12) yields a quadratic expression of the form
of Equation (2), and the relation between the parameters
of model (10) and those of the variance stabilizing
transformation (4) is given by a = −αsη/(mηsν), b =
sη/(mηsν), γ = mη/sη.
A further motivation for the quadratic ansatz (2) is
provided by estimating v(u) directly from microarray
data. A typical example is shown in Figure 2. The right
plot shows how the assumption of constant coefficient

of variation breaks down in the low intensity range: the
curve has a non-zero intercept, that is, v(0) > 0, and
its convexity is in agreement with the assumption that
c3 > 0 in Equation (2). Similar curves have been observed
for many slides, and also for other levels of replication,
e. g. with data from replicate spots on one array, or from
replicate arrays. The essential features of these curves may
be captured by parametrizing v(u) as a quadratic function
of the form (2).

PARAMETER ESTIMATION
The parameters of the model (7) are estimated from data
with a robust variant of maximum likelihood estimation.
The detailed derivation, as well as results on convergence
and identifiability are described in (Huber et al., 2002).
Given the data (yki), k ∈ K, i = 1, . . . , d, the profile
log-likelihood (Murphy and van der Vaart, 2000) for the
parameters a1, b1, . . . , ad, bd is

− |K|d
2

log
(∑

k∈K

d∑
i=1

(hi(yki)− µ̂k)2
)

+
∑
k∈K

d∑
i=1

log h′
i(yki), (13)

with hi as in Equation (6). For a fixed set of probes
K, we maximize (13) numerically under the constraints
bi > 0. The set of probes K is determined iteratively by
a version of least trimmed sum of squares (LTS) regres-
sion (Rousseuw and Leroy, 1987). Briefly, K consists of
those probes for which rk =

∑d
i=1(ĥi(yki) − µ̂k)2 is

smaller than an appropriate quantile of the rk. The LTS

Figure 3: Two plots taken from Huber et al [HvHS+02]. The left plot shows the variance (y-axis) versus the mean
(x-axis) from an 8400 element cDNA slide. The right plot shows the standard deviation rather than the variance.
The dots represent single genes, and the solid line shows a moving average.

genes. Without stabilization, a large differential expression for a high intensity gene could potentially be
less significant than a small differential expression for a low intensity gene. After stabilization, however, if
we view expression differences in terms of ∆h, we are guaranteed that a larger difference corresponds to a
greater likelihood of significance.

3.2 The Model

Huber et al. [HvHS+02] use linear normalization to calibrate the slide and dye intensities. Their method
is similar to that described by Yang et al. [YDLS01], but is generalized to work with an arbitrary number
of slides or dyes. Instead of normalizing one color to the other, they normalize each slide to the first slide.
All slides are thus effectively transitively normalized to each other. For each slide (other than the first)
i = 2, . . . , d, we have a scaling factor si and an offset oi. Their normalization equations are then

yki 7−→ ỹki = oi + siyki

where k is the gene and i is the slide or dye number. As Park et al. [PYK+03] showed, nonlinear normalization
typically only leads to small gains over linear normalization, so the choice of using linear normalization is
likely sufficient.

Huber et al. [HvHS+02] next model the variance-mean dependence quadratically. This choice is backed
up by Figure 3, which shows a roughly quadratic curve. Figure 3 also shows a non-zero y-intercept, so the
quadratic model also contains an independent constant term c3:

vk = v(uk) = (c1uk + c2)2 + c3 .

Huber et al. [HvHS+02] then apply the variance stabilization method of Tibshirani [Tib88] to the variance
equation, and obtain the transform:

h(y) =
∫ y

1/
√

v(u)du .

Solving the integral gives:
h(y) = γ arcsinh(a + by) .

Combining with the normalization equation and leaving off the overall scaling factor γ gives:

h(ỹ) = arcsinh(a + b(oi + siyki)) .
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Fig. 3. The difference between the two color channels of a cDNA microarray versus the rank of their average. Plot a) shows the untransformed
intensity data, plots b-f) show the effect of five different transformations (see text). The y-axes of plots b-d) correspond to the usual “log ratio”,
the y-axis of plot f) to the difference statistic ∆h as proposed in this article.

hypothesis that it is less or equal to zero, or greater or equal
to zero, respectively. We chose this procedure in order
to make the comparison insensitive to potential subtle
biases in the estimation of the calibration parameters. Such
biases could be caused by a difference in the number of
up- and down-regulated genes, and could consequently
lead to biases in any of the difference statistics (i)-(vi).
However, they would have opposite effects on the number
of detected genes in the two tests. The fact that the
difference statistic ∆h detects more genes in both one-
sided tests verifies that its better performance is not related
to such potential biases.
To evaluate our method with data from a different
technological platform and experimental design, we
used an expression data set measured on Affymetrix
oligonucleotide arrays. It comprises 47 samples of
acute myeloid leukemia and 25 samples of acute lym-
phoblastic leukemia (Golub et al., 1999). From the data
matrix provided at Golub et al.’s website (http://www-
genome.wi.mit.edu/mpr) we calculated calibrated and
transformed data hi(yki), with k = 1, . . . , 7129 and

i = 1, . . . , 72. We used the data as is, with no further
selection or tresholding, and ignored the A/M/P-flags that
the Affymetrix software associated with each value. The
simultaneous estimation of the 2d = 144 parameters
posed no particular problem. In contrast, Golub et al. used
a calibration method based on a linear regression, which
in a pairwise fashion referenced arrays 2 . . . 38 to array 1,
and arrays 40 . . . 72 to array 39. We used a two-sample
permutation t-test to detect genes differentially expressed
between AML and ALL. The result is shown in Figures 4c
and d. Again, the test based on∆h has higher power.
Finally, an example for how the difference statistic ∆h
leads to more easily interpretable data displays is depicted
in Figure 5. Since the distribution of ∆h is independent
of the mean intensity, observed values can directly be
compared to the marginal empirical distribution, shown
in the histogram to the right. A scale on the ∆h axis
may be defined through a robust measure of width σ∆h of
the empirical distribution, as indicated in Figure 5. Note,
however, that in general the null distribution of ∆h is
not known, and in the presence of an unknown subset
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Fig. 3. The difference between the two color channels of a cDNA microarray versus the rank of their average. Plot a) shows the untransformed
intensity data, plots b-f) show the effect of five different transformations (see text). The y-axes of plots b-d) correspond to the usual “log ratio”,
the y-axis of plot f) to the difference statistic ∆h as proposed in this article.
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permutation t-test to detect genes differentially expressed
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and d. Again, the test based on∆h has higher power.
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Figure 4: Two plots taken from Huber et al [HvHS+02]. The left plot shows the variance-mean dependence of
lowess-normalized data. The right plot shows the variance-mean dependence of data normalized with the method of
Huber et al. [HvHS+02]. The x-axis indicates the rank of the mean of the gene. In the lowess plot, the y-axis tracks
the log ratio. In the Huber et al. plot, the y-axis measures the ∆h statistic.

Finally, setting ai = a + boi and bi = bsi gives:

h(ỹ) = arcsinh(ai + biyki) .

In order to use the derived transform, we first need to estimate the parameters. We would like to estimate the
parameters using the genes which are not differentially expressed. However, we do not know which genes are
or are not differentially expressed. If we knew the parameters, though, we could estimate which genes were
differentially expressed. Thus, Huber et al. [HvHS+02] suggest using Maximum Likelihood Estimation by
Expectation Maximization. They iteratively estimate the parameters form the constantly expressed genes,
and estimate the constantly expressed genes from the parameters, until they converge to a local likelihood
maxima.

3.3 Results

Figure 4 (taken from Huber et al. [HvHS+02]) compares the variance distribution of data normalized
with lowess nonlinear normalization with the variance distribution of data normalized with the variance
stabilization method of Huber et al. [HvHS+02]. The data is from a cDNA microarray measuring neighboring
regions of a kidney tumor. In both graphs, the x-axis indicates the rank of the mean of the gene. In the
lowess graph, the y-axis measures the log expression ratio, which, as we can see, overcorrects for the variance-
mean dependency. In the variance stabilization graph, the y-axis measures the ∆h statistic, which seems to
remove the variance-mean dependency.

4 Other Normalization Methods

A number of other normalization methods have been proposed. Workman et al. [WJJ+02] suggest using
cubic splines for nonlinear normalization. Schadt et al. [SLEW01] propose a normalization method based
on changes in the ranks of the intensity values. Kepler et al. [KCM02] describe a local regression based
approach to normalization. Luck [Luc01] and Munson [Mun01] also suggest other, alternative normalization
techniques.
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5 Conclusions

We have discussed normalization techniques for microarray data which can solve some of the problems cited
by Kothapalli et al [KYML02]. In particular, the techniques presented by Yang et al. [YDLS01] address the
problems with dye color variation, print-tip effects, scanning variation, and slide-preparation and wet-lab
variables. The techniques presented by Huber et al. [HvHS+02] and Geller et al. [GGHR03] also attack the
problem of mean-variance dependency.

All of these papers, however, fail to address the question of what effect their normalization techniques have
on the next stage of processing. Typically, normalization is run as a preprocessing step, prior to clustering,
classification, feature selection, et cetera. We would be interested in seeing a future study comparing the
efficacy of various postprocessing algorithms after these normalization techniques have been applied.
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[HvHS+02] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Variance stabiliza-
tion applied to microarray data calibration and to the quantification of differential expression.
Bioinformatics, 18(Supplement 1):S96–S104, 2002.

[KCM02] T. B. Kepler, L. Crosby, and K. T. Morgan. Normalization and analysis of DNA microarray data
by self-consistency and local regression. Genome Biology, 3(7):research0037.1–research0037.12,
2002.

[KYML02] R. Kothapalli, S. Yoder, S. Mane, and T. Loughran. Microarray results: how accurate are they?
BMC Bioinformatics, 3(1):22, 2002.

[Luc01] S.D. Luck. Normalization and error estimation for biomolecular expression patterns. In Pro-
ceedings of SPIE BiOS, volume 4266, San Jose, CA, USA, Jan. 2001.

[Mun01] P. Munson. A ’consistency’ test for determining the significance of gene expression changes
on replicate samples and two convenient variance-stabilizing transformations. In GeneLogic
Workshop on Low Level Analysis of Affymetrix GeneChip Data, 2001.

[PYK+03] T. Park, S.-G. Yi, S.-H. Kang, S.Y. Lee, Y.-S. Lee, and R. Simon. Evaluation of normalization
methods for microarray data. BMC Bioinformatics, 4(1):33, 2003.

[SLEW01] E. E. Schadt, C. Li, B. Ellis, and W. H. Wong. Feature extraction and normalization algorithms
for high-density oligonucleotide gene expression array data. Journal of Cellular Biochemistry,
Supplement 37:120–125, 2001.

[Tib88] R. Tibshirani. Estimating transformation for regression via additivity and variance stabilization.
J. American Statistical Association, 83:394–405, 1988.

[WJJ+02] C. Workman, L. J. Jensen, H. Jarmer, R. Berka, L. Gautier, H. B. Nielsen, H.-H. Saxlid,
C. Nielsen, S. Brunak, and S. Knudsen. A new non-linear normalization method for reducing
variability in DNA microarray experiments. Genome Biology, 3(9):research0048.1–0048.16, 2002.

[YDLS01] Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed. Normalization for cDNA microarray data. In
Proceedings of SPIE BiOS, volume 4266, San Jose, CA, USA, Jan. 2001.

8


