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1 Introduction

1.1 History of Protein Folding

Understanding how a strand of amino acids folds to form a three dimensional structure is
a big problem whose solution offers similarly big rewards. A breakthrough in this area
has the potential to revolutionize medical research, molecular biology and related fields.
For 40 years scientists have worked to discover how a protein’s amino acid sequence
determines its function, and while great strides have been made, the ultimate goal has not
yet been achieved.

Proteins are the machinery via which cells perform nearly all of their functions. Because
protein interacts physically according to the “key hole” principle, its three dimensional
shape determines its behavior and interactions with cellular structures. All information
about a protein’s 3D shape is encoded in a 1D strand of amino acids which, in solution,
forms various secondary structures such as helices, ribbons and loops which further fold
up on themselves to take on a distinct 3D form.

Researchers have applied every imaginable pattern discovery, recognition, matching
technique to this problem, with several yielding encouraging results. One such approach
called comparative modeling has offered fairly accurate predictions of 3D structure by
identifying proteins with similar sequences and known structure. Other approaches have
tried to break the complex problem down into simpler ones addressing factors such as
secondary structure, solvent accessibility and inter residue distances.

Research has shown that similarly structured proteins perform similar functions, so while
it is desirable to define functions as precisely as possible, classifying proteins into
functional families another intermediate yet informative problem. This classification
problem can be approached from many angles, one of which, neural networks, we
examine here.

1.2 Evolution of Neural Networks

Neural networks are a machine learning technique originally designed to emulate the
behavior of neurons in the brain. Applications of neural networks range from signal
processing to stock market predictions, and of course classification as described here.

The most basic neural network is a single layer “feed forward” network. Each input node
takes a binary value and the network calculates the output value (between 0 and 1) as a
function of the inputs and the parameters on each edge. A simple example is shown in
the diagram below.
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Figure 1.1. Example single layer neural network

Neural networks can be tailored to more complex classification problems by adding
additional layers of nodes. In the example below the extra layer allows the classifier to
distinguish a more complex pattern of nodes.
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Figure 1.2. Simple multilayer neural network

Naturally the value of the parameter along each edge is critical to the network’s function,
and these parameters must be learned via training data. Any algorithm that minimizes the
network error (error = (output — desired)’) can be used to select parameters. If any a

priori knowledge is available it should be used to make an initial parameter estimate as
training can otherwise be time consuming.

The key property of neural networks is that they can learn to recognize patterns, but at the

same time generalize and recognize similar patterns that may not have been included in
the training set.



2 Why Apply Neural Networks to Protein Folding?

Protein functional families have been shown to have strong amino acid sequence
conservation and therefore pose a natural classification problem. In fact, the genetic code
by which nucleotide triplets code for amino acids was discovered using a neural network.
In the past, when neural networks have been applied to related problems, the results have
been promising. Burkhard Rost cites several such efforts in his article “Neural Networks
predict protein structure: hype or hit?” published in 2003 in “Artificial Intelligence and
Heuristic Methods in Bioinformatics.”

Neural networks have also been used to try to deduce the tertiary structure of some
proteins by classifying amino acid residues as either “exposed” or “buried” with respect
to the molecule’s hydrophobia/hydrophilia in solution. Neural networks have even
helped detect errors in protein databases. Researchers were able to do this by tracking
which test cases always remained unclassifiable, even when the networks were overfitted
to the data.

Even with these advances, neural networks have shown signs of even more effective
application. As a technique it is able to incorporate evolutionary information in the form
of a multiple sequence alignment. This insight pushed secondary structure prediction
(classifying secondary state as either a helix, strand or loop) across the apparent 70%
accuracy limit to where it stands today at 76%. Multiple sequence alignments were able
to improve the results of other experiments as well such as solvent access classification.

Other efforts to inject biological knowledge into the classification process with neural
networks have been successful. For example, researchers noticed that in the secondary
structure classification experiments, the strands were never particularly well predicted
compared to the other two structures. Initially this was attributed to features that were
outside of the window frame over which each prediction was made, however it was later
noticed that it was the network took about one tenth the time to learn to recognize helices
and loops than it took to learn to identify a strand. By adjusting the training data to
increase the frequency of strands, researchers were able to train the network to detect
strands as effectively as it had been predicting the other two. What is encouraging about
this is that the problem was not due to an inherent shortcoming of the model or to long
range interactions between acid residues, but rather a technical problem in the way it was
used.

Researchers hope to build on these experiences and push neural networks farther towards
exposing comprehensive information about an unknown protein’s function. Two such
efforts are detailed in the next section.



3 Two examples

3.1 Protein Secondary Structure Prediction Based on Denoeux
Belief Neural Network

3.1.1 Purpose

The goal of this work was to use neural nets to effectively predict the secondary structure
of proteins. Currently the best secondary structure prediction method is SSpro8 with
accuracy in the range of 62-63%. Inaccuracies are due to complexity factors used to
determine structure conformation. As input to the system, one can choose to use DNA or
amino acid sequences. SSpro8 uses amino acid sequences, whereas the authors’ system,
UTMPred, uses DNA. As output classes for both of the above systems, the forms
consisting of alpha helices, beta sheets and loops are expanded to eight structure forms
(Table 3.1).

Regular Expanded Abbreviation
Residue 1n 1solated p-bridge B
Sheet
Extended strand in p ladder E
3-helix (3/10 helix) G
Helix Alpha helix H
5 helix (m helix) I
Bend S
Loop Hydrogen bonded turn T
Connecting region C

Table 3.1. Protein Secondary Structure Forms

3.1.2 Methodology

At its core the problem of predicting secondary structures in protein is a classification
problem. The Denoeux belief neural network (DBNN) model (Figure 3.1) is incorporated
within the UTMPred as the classification engine.
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Figure 3.1. Denoeux Belief Neural Network (DBNN) Architecture
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The DBNN input are DNA sequences converted to binary format prior to use. A is
represented as 1000, C as 0100, G as 0010, and T as 0001.

88 Escheichia coli proteins, 25 yeast Saccharomyces cerevisiae proteins and 166
mammalian proteins (80 of which are human), are used in the experiment. All of the
structures listed above have a resolution greater than or equal to 2.5 . The input window
size for UTMPred is set to 7 codons (Figure 3.2), which results in 84 input nodes and 8
output nodes which represent the structure forms.
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Figure 3.2. Detailed Architecture of UTMPred

3.1.3 Results

UTMPred used 200 prototypes as training data and once the training was complete, the
system was able to predict H and E forms with greater than 75% accuracy. At the same
time, the system had difficulty predicting form I (5 helix or m helix), due to a small
amount of data in the training samples (Figure 3.3a, 3.3b).



Entire Data Training Data
{280 Proteins) {138 Proteins)
Structure | Freguency | Structure | Frequency
B 644 B 289
E 11570 E 3649
G 1827 G 896
H 16791 H 8013
I 20 I 15
5 4613 5 2177
O Cormeat o] 2E0E = 280 a g2 288 ieE | EOGET
T 5005 T 2867 o %) 1e0 | 7aw | 266 | #en | oo | 79 [ sa7 [ @0 [ ear
C 8513 C 4113
Total 499385 Total 24019

Table 3.3.a. UTMPred Prediction Results
Figure 3.3.b. Statistics with Input Windows Size 7

3.2 Assignment of Protein Sequence to Functional Family Using
Neural Network and Dempster-Shafer Theory

3.2.1 Purpose

In this project the previous work was expanded to try to efficiently predict protein
function. This can be done either by querying databases such as Prosite, Pfam, and Prints,
for motifs within a single protein or to query for an absence or presence of arbitrary
combinations of motifs.

3.2.2 Methodology

Given a training set, the task is to induce a classifier that is able to assign novel protein
sequences to one of the protein families represented in the training set. Protein sequences
with known function are divided into training and testing datasets and a DBNN is used to
build a classifier on the training set. Once trained, the classifier will be able to predict
novel proteins into specific functional families based on what it learned from the training
set (Figure 3.4).
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Figure 3.4. Basic approach of protein sequence assignment to functional families

Training and test data consisted of over 1100 entries from the Prosite database. Each
entry describes a function shared by some proteins. In the experiment, one Prosite
documentation entry corresponded to a protein class, and each protein class could , in
turn, be characterized by one or more motif patterns/profiles. Only motifs considered
significant matches by profileScan were chosen, and a DBNN was used as the classifier.

3.2.3 Results

The performance of the system was compared to existing statistical and neural network
techniques and proved robust to strong changes in the distribution of the input data.
Since protein functional predictions is difficult due to the volatility of input data, this
robustness is considered extremely useful.

585 proteins belonging to one of ten classes were used, from which subsets of varying
size were picked randomly to become the training set. For each set (of size 11, 20, 29,
58, 117,175, 234, 294, 351, and 585) the experiment was run three times, each time
using a randomly sampled training set of the given size. Once the DBNN was trained, all
585 proteins were used as the test set to determine accuracy (Figure 3.5).
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Figure 3.5. With only 10% of the total training samples, DBNN could be constructed to classify
proteins with a 95% accuracy.

An additional benefit of the DBNN was that the number of false positives generated were
significantly lower than those resulting from a Prosite search. (The original paper
[Zaki2003] offers no more information about the search method that was used.) As seen
in Figure 3.6, as the size of the data set approaches 100% of the 585 total proteins in the
experiment, the false positives discovered by DBNN approaches zero.
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Figure 3.6. The number of false positives resulting from the use of the DBNN trained using training
sets of different sizes.

As an additional exploration, a second data set of 73 protein sequences drawn from five
classes were used to build a DBNN classifier. These proteins were chosen so that there
was significant overlap in motif composition among the families. If querying were to be
done in Prosite, there would be a high rate of false positives. However, using the DBNN
classifier built by random sized datasets, the output exceeded 96% accuracy when trained
on more than 22 data samples. Once the input contained more than 80% (58 or more
sequences) of the dataset, all sequences were correctly predicted (Figure 3.7).
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Figure 3.7. Result of classifying proteins containing common motifs.
4 Future Work

It is unlikely that a single discovery will provide the breakthrough to full protein structure
prediction. What is more plausible is that the successful approach will incorporate
several methods in concert. Neural networks are likely to be part of this solution as they
have been shown to effectively analyze nearly any feature relevant to protein function
from secondary structures to solvent access to the distances between residues in the final
structure. Furthermore, neural networks can combine knowledge from multiple sources,
which naturally would be a critical component in this expected hybrid solution.
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