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Outline of talk
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• Summary and Conclusions



5

Principal Component Analysis
(PCA)

• Reduce dimensionality
• Retain as much

variation as possible
• Linear transformation

of the original
variables

• Principal components
(PC’s) are uncorrelated
and ordered

PC1PC2
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Definition of PC’s
• FIRST principle component – the direction

which maximizes variability of the data
when projected on that axis

• Second PC – the direction, among those
orthogonal to the first, maximizing
variability

• ...
• Fact:  They are eigenvectors of ATA ;

eigenvalues are the  variances
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Motivation
• Chu et al. [1998] identified 7 clusters using

Eisen et al.’s CLUSTER software
(hierarchical centroid-link) on the yeast
sporulation data set.

• Raychaudhuri et al. [2000] applied PCA to
the sporulation data, and claimed that the
data showed a unimodal distribution in the
space of the first 2 PC’s.
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PC’s in Sporulation Data

1st two PC’s: > 90% of variance

1st three PC’s: > 95% of variance
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“The
unimodal
distribution
of
expression
in the most
informative
two
dimensions
suggests
the genes
do not fall
into well-
defined
clusters.”
-- Raychaudhuri
et al.
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PCA and clustering
• Euclidean distance:

– using all p variables,
Euclidean distance
between a pair of genes
unchanged after PCA
[Jolliffe 1986]

– using m variables (m<p) ==>
approximation

• Correlation coefficient
– no general relationship

before and after PCA

PC1
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Intuitively, PCA helps
clustering. But...

• Under some assumptions,
– Chang[1983] showed that

the set of PC’s with the
largest eigenvalues does
not necessarily capture
cluster structure info

PC1

PC1
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Our empirical study

• Goal: Compare the clustering results with
and without PCA to an external criterion:
– expression data set with external criterion
– synthetic data sets
– methodology to compare to an external

criterion
– clustering algorithms
– similarity metrics
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Ovary data (Michel Schummer)
• Randomly selected cDNA’s on membrane arrays
• Subset of data:

– 235 clones
– 24 experiments (7 from normal tissues, 4 from

blood samples, 13 from ovarian cancers)

• 235 clones correspond to 4 genes (sizes 58,
88, 57,32)

• The four genes form the 4 classes (external
criterion)
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PCA on ovary data
• Number of PC’s to adequately represent the

data:
– 14 PC’s cover 90% of the variation
– scree graph
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Synthetic data sets (1)
• Mixture of normal distributions

– Compute the mean vector and covariance matrix
for each class in the ovary data

– Generate a random mixture of normal distributions
using the mean vectors, covariance matrices, and
size distributions from the ovary dataHistogram of a normal class Histogram of a tumor class
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Synthetic data sets (2)
• Randomly permuted ovary

data
– Random sample (with

replacement) the
expression levels in the
same class

– Empirical distrubution
preserved

– But covariance matrix not
preserved
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(variables)
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Clustering algorithms and
similarity metrics

• CAST [Ben-Dor and Yakhini 1999] with correlation
– build one cluster at a time
– add or remove genes from clusters based on

similarity to the genes in the current cluster

• k-means with correlation and Euclidean
distance
– initialized with hierarchical average-link
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PCA

Our approach

Cluster the
original data

Cluster with the
first m PC’s
(m=m0, …, p)

Compare to
external criterion

    Cluster with sets of PC
with “high” adjusted
Rand indices:
– greedy approach

• exhaustive search for
m0 components

• greedily add the next
component

– modified greedy approach

PCA
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Results: ovary data
k-means with correlation

• Adjusted Rand index for the first m (m>=7) PC’s
higher than without PCA

• adjusted Rand index with all 24 PC’s higher than
without PCA
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Results: ovary data
k-means with Euclidean distance

• Sharp drop of adjusted Rand index from the first
3 to first 4 PC’s
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Results: ovary data
CAST with correlation

• Adjusted Rand index on the first components <=
without PCA

• greedy or modified greedy approach usually achieve
higher adjusted Rand than without PCA
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Ovary/Cast, Correlation
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Real data: did PCA help?

• 2 data sets, 5 algorithms
• “+” means clustering using the first c

PC’s helped (for some c)

-----Cell cycle

-+-+-Ovary

Ave-link
distance

Ave-link
correlation

k-Means
distance

k-Means

 correlation

CAST
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Synth data: Did PCA help?
p-values from Wilcoxon signed rank test.  (p<5% are bold)

Synthetic data           Alternative         CAST   k-mean k-mean ave-link ave-link
                                  hypothesis          corr.     Corr      dist        corr       dist

Mixture of normal     no PCA > first   0.039   0.995     0.268    0.929     0.609
Mixture of normal     no PCA < first   0.969   0.031     0.760    0.080     0.418

Random resampled    no PCA > first  0.243    0.909     0.824    0.955     0.684
Random resampled    no PCA < first  0.781    0.103     0.200    0.049     0.337

Cyclic data                 no PCA > first   0.023   NA        0.296     0.053    0.799
Cyclic data                 no PCA < first   0.983   NA        0.732     0.956    0.220
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Summary & Conclusions (1)
• PCA may not improve cluster quality

– first PC’s may be worse than without PCA
– another set of PC’s may be better than first PC’s

• Effect of PCA depends on clustering
algorithms and similarity metrics
– CAST with correlation: first m PC’s usually worse

than without PCA
– k-means with correlation: usually PCA helps
– k-means with Euclidean distance: worse after the

first few PC’s
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Summary & Conclusions (2)

• No general trends in the components chosen
by the greedy or modified greedy approach
– usually the first 2 components are chosen by the

exhaustive search step

• Results on the synthetic data similar to real
data
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Bottom Line

• Successes by other groups make
it a technique worth considering,
but it should not be applied
blindly.



43

Acknowledgements
• Ka Yee Yeung
• Michèl Schummer

More Info
http://www.cs.washington.edu/homes/{kayee,ruzzo}

 UW CSE Computational Biology Group



48

Mathematical definition of PCA
• The k-th PC:

• First PC :maximize
var (z1)=a1

TSa1, such that
a1

Ta1=1, where S is the
covariance matrix

• k-th PC: maximize
var (zk)=ak

TSak, such that
ak

Tak=1 and ak
Tai=0,

where i < k
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More details on PCA

• It can be shown that ak is an
eigenvector of S corresponding to the
k-th largest eigenvalue lk

• var (zk) = lk

• Use sample covariance matrix:
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